Comparative protein analysis of two maize genotypes with contrasting tolerance to low temperature

Author:

Ramazan Salika,Jan Nelofer,John Riffat

Abstract

Abstract Background Low temperature (LT) stress is one of the major environmental stress factors affecting the growth and yield of maize (Zea mays L.). Hence, it is important to unravel the molecular mechanisms behind LT stress tolerance to improve molecular breeding in LT tolerant genotypes. In the present study, two maize genotypes viz. Gurez local from Kashmir Himalaya and tropical grown GM6, were dissected for their LT stress response in terms of accumulation of differentially regulated proteins (DRPs). Leaf proteome analysis at three-leaf stage of maize seedlings subjected to LT stress of 6 °C for a total of 12 h duration was performed using two dimensional gel electrophoresis (2D-PAGE) followed by subsequent identification of the proteins involved. Results After MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) and bioinformatics analysis, 19 proteins were successfully identified in Gurez local, while as 10 proteins were found to get successful identification in GM6. The interesting observations from the present investigation is the identification of three novel proteins viz. threonine dehydratase biosynthetic chloroplastic, thylakoidal processing peptidase 1 chloroplastic, and nodulin-like protein, whose role in abiotic stress tolerance, in general, and LT stress, in particular, has not been reported so far. It is important to highlight here that most of LT responsive proteins including the three novel proteins were identified from Gurez local only, owing to its exceptional LT tolerance. From the protein profiles, obtained in both genotypes immediately after LT stress perception, it was inferred that stress responsive protein accumulation and their expression fashion help the Gurez local in seedling establishment and withstand unfavorable conditions as compared to GM6. This was inferred from the findings of pathway enrichment analysis like regulation of seed growth, timing of floral transition, lipid glycosylation, and aspartate family amino acid catabolic processes, besides other key stress defense mechanisms. However, in GM6, metabolic pathways enriched were found to be involved in more general processes including cell cycle DNA replication and regulation of phenylpropanoid metabolism. Furthermore, majority of the qRT-PCR results of the selected proteins demonstrated positive correlation between protein levels and transcript abundance, thereby strengthening our findings. Conclusions In conclusion, our findings reported majority of the identified proteins in Gurez local exhibiting up-regulated pattern under LT stress as compared to GM6. Furthermore, three novel proteins induced by LT stress were found in Gurez local, requiring further functional validation. Therefore, our results offer more insights for elucidating the molecular networks mediating LT stress tolerance in maize.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3