miR168 targets Argonaute1A mediated miRNAs regulation pathways in response to potassium deficiency stress in tomato

Author:

Liu Xin,Tan Chunchang,Cheng Xin,Zhao Xiaoming,Li Tianlai,Jiang Jing

Abstract

Abstract Background Potassium (K+) is an essential ion for most plants, as it is involved in the regulation of growth and development. K+ homeostasis in plant cells has evolved to facilitate plant adaptation to K+-deficiency stress. Argonaute1 (AGO1) is regulated by miR168 to modulate the small RNA regulatory pathway by RNA silencing complex (RISC) in tomatoes. However, the role of miR168-mediated regulation of AGO1 in the context of K+ deficiency stress in tomatoes has not been elucidated yet. Results SlmiR168 and its target gene SlAGO1A were differentially expressed among low-K+-tolerant JZ34 and low-K+-sensitive JZ18 tomato plants. Transgenic tomato plants constitutively expressing pri-SlmiR168a showed stronger root system growth, better leaves development, and higher K+ contents in roots under K+-deficiency stress than those of the transgenic tomato lines expressing rSlAGO1A (SlmiR168-resistant) and the wild type (WT). Deep sequencing analysis showed that 62 known microRNAs (miRNAs) were up-regulated in 35S:rSlAGO1 compared with WT tomatoes. The same miRNAs were down-regulated in 35S:SlmiR168a compared with WT plants. The integrated analysis found 12 miRNA/mRNA pairs from the 62 miRNAs, including the root growth and cytokinin (CTK)/abscisic acid (ABA) pathways. Conclusions The regulation mediated by SlmiR168 of SlAGO1A contributes to the plant development under low-K+ stress. Moreover, this regulation mechanism may influence downstream miRNA pathways in response to low-K+ stress through the CTK/ABA and root growth modulation pathways.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3