Abstract
Abstract
Background
Many conifer breeding programs are paying increasing attention to breeding for resistance to needle disease due to the increasing importance of climate change. Phenotyping of traits related to resistance has many biological and temporal constraints that can often confound the ability to achieve reliable phenotypes and consequently, reliable genetic progress. The development of next generation sequencing platforms has also enabled implementation of genomic approaches in species lacking robust reference genomes. Genomic selection is, therefore, a promising strategy to overcome the constraints of needle disease phenotyping.
Results
We found high accuracy in the prediction of genomic breeding values in the disease-related traits that were well characterized, reaching 0.975 for genotyped individuals and 0.587 for non-genotyped individuals. This compared well with pedigree-based accuracies of up to 0.746. Surprisingly, poorly phenotyped disease traits also showed very high accuracy in terms of correlation of predicted genomic breeding values with pedigree-based counterparts. However, this was likely caused by the fact that both were clustered around the population mean, while deviations from the population mean caused by genetic effects did not appear to be well described. Caution should therefore be taken with the interpretation of results in poorly phenotyped traits.
Conclusions
Implementation of genomic selection in this test population of Pinus radiata resulted in a relatively high prediction accuracy of needle loss due to Dothistroma septosporum compared with a pedigree-based approach. Using genomics to avoid biological/temporal constraints where phenotyping is reliable appears promising. Unsurprisingly, reliable phenotyping, resulting in good heritability estimates, is a fundamental requirement for the development of a reliable prediction model. Furthermore, our results are also specific to the single pathogen mating-type that is present in New Zealand, and may change with future incursion of other pathogen varieties. There is no doubt, however, that once a robust genomic prediction model is built, it will be invaluable to not only select for host tolerance, but for other economically important traits simultaneously. This tool will thus future-proof our forests by mitigating the risk of disease outbreaks induced by future changes in climate.
Publisher
Springer Science and Business Media LLC
Reference75 articles.
1. Ivory M. Records of foliage pathogens of Pinus species in tropical countries. Plant Pathol. 1994; 43(3):511–8.
2. Bradshaw R. Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review. Forest Pathol. 2004; 34(3):163–85.
3. Bulman LS, Dick MA, Ganley RJ, McDougal RL, Schwelm A, Bradshaw RE. Dothistroma needle blight In: Gonthier P, Nicolotti G, editors. Infectious Forest Diseases, Chap. 22. Wallingford, UK: CABI: 2013. p. 436–57.
4. Ivković M, Baltunis B, Gapare W, Sasse J, Dutkowski G, Elms S, et al.Breeding against Dothistroma needle blight of radiata pine in Australia. Can J Forest Res. 2010; 40(8):1653–60.
5. Shain L, Franich RA. Induction of Dothistroma blight symptoms with dothistromin. Physiol Plant Pathol. 1981; 19(1):49–55.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献