Abstract
Abstract
Background
Lead (Pb) is a harmful pollutant that disrupts normal functions from the cell to organ levels. Salix babylonica is characterized by high biomass productivity, high transpiration rates, and species specific Pb. Better understanding the accumulating and transporting Pb capability in shoots and roots of S. babylonica, the toxic effects of Pb and the subcellular distribution of Pb is very important.
Results
Pb exerted inhibitory effects on the roots and shoots growth at all Pb concentrations. According to the results utilizing inductively coupled plasma atomic emission spectrometry (ICP-AES), S. babylonica can be considered as a plant with great phytoextraction potentials as translocation factor (TF) value > 1 is observed in all treatment groups throughout the experiment. The Leadmium™ Green AM dye test results indicated that Pb ions initially entered elongation zone cells and accumulated in this area. Then, ions were gradually accumulated in the meristem zone. After 24 h of Pb exposure, Pb accumulated in the meristem zone. The scanning electron microscopy (SEM) and energy-dispersive X-ray analyses (EDXA) results confirmed the fluorescent probe observations and indicated that Pb was localized to the cell wall and cytoplasm. In transverse sections of the mature zone, Pb levels in the cell wall and cytoplasm of epidermal cells was the lowest compared to cortical and vessel cells, and an increasing trend in Pb content was detected in cortical cells from the epidermis to vascular cylinder. Similar results were shown in the Pb content in the cell wall and cytoplasm of the transverse sections of the meristem. Cell damage in the roots exposed to Pb was detected by propidium iodide (PI) staining, which was in agreement with the findings of Pb absorption in different zones of S. babylonica roots under Pb stress.
Conclusion
S. babylonica L. is observed as a plant with great potential of Pb-accumulation and Pb-tolerance. The information obtained here of Pb accumulation and localization in S. babylonica roots can furthers our understanding of Pb-induced toxicity and its tolerance mechanisms, which will provide valuable and scientific information to phytoremediation investigations of other woody plants under Pb stress.
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Obiora SC, Chukwu A, Toteu SF, Davies TC. Assessment of heavy metal contamination in soils around lead (Pb)-zinc (Zn) mining areas in Enyigba, southeastern Nigeria. J Geol Soc. 2016;87(4):453–62.
2. Kumar A, Kumar A, Cabral-Pinto MMS, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Gupta DK, Malyan SK, S Kumar S, A Khan S, Yadav KK. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int J Env Res Pub He. 2020;17(7):2179.
3. Khan I, Iqbal M, Shafiq F. Phytomanagement of lead-contaminated soils: critical review of new trends and future prospects. Int J Environ Sci Te. 2019;16(10):6473–88.
4. Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, Ahmad M, Anjum MZ. Lead toxicity in plants: Impacts and remediation. J Environ Manag. 2019;250:UNSP 109557.
5. Leal-Alvarado DA, Espadas-Gil F, Saenz-Carbonell L, Talavera-May C, Santamaria JM. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima baker by affecting the cell membrane and inducing stomatal closure. Aquat Toxicol. 2016;171:37–47.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献