tRNA-derived fragments from wheat are potentially involved in susceptibility to Fusarium head blight

Author:

Sun Zhengxi,Hu Yi,Zhou Yilei,Jiang Ning,Hu Sijia,Li Lei,Li Tao

Abstract

Abstract Background Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating fungal disease of wheat. The mechanism underlying F. graminearum-wheat interaction remains largely unknown. tRNA-derived fragments (tRFs) are RNase-dependent small RNAs derived from tRNAs, and they have not been reported in wheat yet, and whether tRFs are involved in wheat-F. graminearum interactions remains unknown. Results Herein, small RNAs from the spikelets inoculated with F. graminearum and mock from an FHB-susceptible variety Chinese Spring (CS) and an FHB-resistant variety Sumai3 (SM) were sequenced respectively. A total of 1249 putative tRFs were identified, in which 15 tRFs was CS-specific and 12 SM-specific. Compared with mock inoculation, 39 tRFs were significantly up-regulated across both wheat varieties after F. graminearum challenge and only nine tRFs were significantly down-regulated. tRFGlu, tRFLys and tRFThr were dramatically induced by F. graminearum infection, with significantly higher fold changes in CS than those in SM. The expression patterns of the three highly induced tRFs were further validated by stem-loop qRT-PCR. The accumulation of tRFs were closely related to ribonucleases T2 family members, which were induced by F. graminearum challenge. The tRFs’ targets in host were predicted and were validated by RNA sequencing. Conclusion Integrative analysis of the differentially expressed tRFs and their candidate targets indicated that tRFGlu, tRFLys and tRFThr might negatively regulate wheat resistance to FHB. Our results unvealed the potential roles of tRFs in wheat-F. graminearum interactions.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3