Comparative plastome analysis of the sister genera Ceratocephala and Myosurus (Ranunculaceae) reveals signals of adaptive evolution to arid and aquatic environments

Author:

Long Jing,He Wen-Chuang,Peng Huan-Wen,Erst Andrey S.,Wang Wei,Xiang Kun-Li

Abstract

Abstract Background Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. Results Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. Conclusions The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3