An integrated linkage map of interspecific backcross 2 (BC2) populations reveals QTLs associated with fatty acid composition and vegetative parameters influencing compactness in oil palm

Author:

Yaakub ZulkifliORCID,Kamaruddin Katialisa,Singh Rajinder,Mustafa Suzana,Marjuni Marhalil,Ting Ngoot-Chin,Amiruddin Mohd Din,Leslie Low Eng-Ti,Cheng-Li Ooi Leslie,Sritharan Kandha,Nookiah Rajanaidu,Jansen Johannes,Ong Abdullah Meilina

Abstract

Abstract Background Molecular breeding has opened new avenues for crop improvement with the potential for faster progress. As oil palm is the major producer of vegetable oil in the world, its improvement, such as developing compact planting materials and altering its oils’ fatty acid composition for wider application, is important. Results This study sought to identify the QTLs associated with fatty acid composition and vegetative traits for compactness in the crop. It integrated two interspecific backcross two (BC2) mapping populations to improve the genetic resolution and evaluate the consistency of the QTLs identified. A total 1963 markers (1814 SNPs and 149 SSRs) spanning a total map length of 1793 cM were integrated into a consensus map. For the first time, some QTLs associated with vegetative parameters and carotene content were identified in interspecific hybrids, apart from those associated with fatty acid composition. The analysis identified 8, 3 and 8 genomic loci significantly associated with fatty acids, carotene content and compactness, respectively. Conclusions Major genomic region influencing the traits for compactness and fatty acid composition was identified in the same chromosomal region in the two populations using two methods for QTL detection. Several significant loci influencing compactness, carotene content and FAC were common to both populations, while others were specific to particular genetic backgrounds. It is hoped that the QTLs identified will be useful tools for marker-assisted selection and accelerate the identification of desirable genotypes for breeding.

Funder

Malaysian Palm Oil Board

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference84 articles.

1. Oil World. 2017. http://www.oilworld.biz/app.php. Accessed 11 Feb 2019.

2. Kushairi A, Soh KH, Azman I, Elina H, Meilina OA, Zanal Bidin MNI, Razmah G, Shamala S, Ahmad Parveez GK. Oil palm economic performance in Malaysia and R&D progress in 2017. J Oil Palm Res. 2018;30(2):163–95.

3. USDA. Malaysia: stagnating palm oil yields impede growth. Commodity intelligence report. 2012. http://www.pecad.fas.usda.gov/highlights/2012/12/Malaysia. Accessed 28 Feb 2019.

4. Sharma M, Tan YP. Oil palm breeding programme and the performance of DxP planting materials at United Plantation Bhd. In: Proceedings of seminar on sourcing of oil palm planting materials for local and overseas join venture. Malaysia: PORIM; 1999. p. 118–35.

5. Kushairi A, Rajanaidu N, Jalani BS, Mohd Rafii Y, Mohd Din A. PORIM oil palm planting materials. PORIM Bull. 1999;38:1–13.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3