Genome-wide association analysis for maize stem Cell Wall-bound Hydroxycinnamates

Author:

López-Malvar A.,Butrón A.,Samayoa L. F.,Figueroa-Garrido D. J.,Malvar R. A.,Santiago R.

Abstract

Abstract Background The structural reinforcement of cell walls by hydroxycinnamates has a significant role in defense against pests and pathogens, but it also interferes with forage digestibility and biofuel production. Elucidation of maize genetic variations that contribute to variation for stem hydroxycinnamate content could simplify breeding for cell wall strengthening by using markers linked to the most favorable genetic variants in marker-assisted selection or genomic selection approaches​. Results A genome-wide association study was conducted using a subset of 282 inbred lines from a maize diversity panel to identify single nucleotide polymorphisms (SNPs) associated with stem cell wall hydroxycinnamate content. A total of 5, 8, and 2 SNPs were identified as significantly associated to p-coumarate, ferulate, and total diferulate concentrations, respectively in the maize pith. Attending to particular diferulate isomers, 3, 6, 1 and 2 SNPs were related to 8–O–4 diferulate, 5–5 diferulate, 8–5 diferulate and 8–5 linear diferulate contents, respectively. This study has the advantage of being done with direct biochemical determinations instead of using estimates based on Near-infrared spectroscopy (NIRS) predictions. In addition, novel genomic regions involved in hydroxycinnamate content were found, such as those in bins 1.06 (for FA), 4.01 (for PCA and FA), 5.04 (for FA), 8.05 (for PCA), and 10.03 and 3.06 (for DFAT and some dimers). Conclusions The effect of individual SNPs significantly associated with stem hydroxycinnamate content was low, explaining a low percentage of total phenotypic variability (7 to 10%). Nevertheless, we spotlighted new genomic regions associated with the accumulation of cell-wall-bound hydroxycinnamic acids in the maize stem, and genes involved in cell wall modulation in response to biotic and abiotic stresses have been proposed as candidate genes for those quantitative trait loci (QTL). In addition, we cannot rule out that uncharacterized genes linked to significant SNPs could be implicated in dimer formation and arobinoxylan feruloylation because genes involved in those processes have been poorly characterized. Overall, genomic selection considering markers distributed throughout the whole genome seems to be a more appropriate breeding strategy than marker-assisted selection focused in markers linked to QTL.

Funder

Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia

Plan Estatal de Ciencia y Tecnologia de España

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3