Author:
Shen Hao,Dong Shikui,Xiao Jiannan,Zhi Yangliu
Abstract
Abstract
Background
N (nitrogen) and P (phosphorus) play important roles in plant growth and fitness, and both are the most important limiting factors that affect grassland structure and function. However, we still know little about plant physiological responses to N and P enrichment in alpine grassland of the Qinghai-Tibetan Plateau. In our experiment, five dominant common herbaceous species were selected and their photosynthetic parameters, leaf N content, and aboveground biomass were measured.
Results
We found that species-specific responses to N and P enrichment were obvious at individual level. N addition (72 kg Nha−1 yr−1), P addition (36 kg Pha−1 yr−1) and NP addition (72 kg Nha−1 yr−1and 36 kg P ha−1 yr−1, simultaneously) significantly promoted net photosynthetic rate of Leymus secalinus. Differential responses also existed in the same functional groups. Responses of forb species to the nutrients addition varied, Aconitum carmichaeli was more sensitive to nutrients addition including N addition (72 kg Nha−1 yr−1), P addition (36 kg Pha−1 yr−1) and NP addition (72 kg Nha−1 yr−1and 36 kg P ha−1 yr−1). Responses of plant community photosynthetic traits were not so sensitive as those of plant individuals under N and P enrichment.
Conclusions
Our findings highlighted that photosynthetic responses of alpine plants to N and P enrichment were species-specific. Grass species Leymus secalinus had a higher competitive advantage compared with other species under nutrient enrichment. Additionally, soil pH variation and nutrients imbalance induced by N and P enrichment is the main cause that affect photosynthetic traits of plant in alpine steppe of the Qinghai-Tibetan Plateau.
Funder
the Second Tibetan Plateau Scientific Expedition and Research Program
Qinghai Provincial Key R & D program in Qinghai Province
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Smith JE. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett. 2007;10(12):1135–42.
2. Mo Q, Chen Y, Yu S, Fan Y, Peng Z, Wang W, Wang F. Leaf nonstructural carbohydrate concentrations of understory woody species regulated by soil phosphorus availability in a tropical forest. Ecol Evol. 2020;10(15):8429–38.
3. Zheng Z, Lu J, Su Y, Yang Q, Wang X. Differential effects of n and p additions on foliar stoichiometry between species and community levels in a subtropical forest in eastern china. Ecol Indic. 2020;117: 106537.
4. Raven JA, Handley LL, Wollenweber B. Plant nutrition and water use efficiency. In: Bacon MA, editor. Water use efficiency in plant biology. Boca Raton: CRC Press; 2004. p. 171–97.
5. Reich PB, Oleksyn J, Wright IJ. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia. 2009;160(2):207–12.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献