Author:
Fei Jiao,Wang You-Shao,Cheng Hao,Su Yu-Bin,Zhong Yong-Jia,Zheng Lei
Abstract
Abstract
Background
WRKY transcription factors play key roles in plant development processes and stress response. Kandelia obovata is the most cold-resistant species of mangrove plants, which are the important contributors to coastal marine environment. However, there is little known about the WRKY genes in K. obovata.
Results
In this study, a WRKY transcription factor gene, named KoWRKY40, was identified from mangrove plant K. obovata. The full-length cDNA of KoWRKY40 gene was 1420 nucleotide bases, which encoded 318 amino acids. The KoWRKY40 protein contained a typical WRKY domain and a C2H2 zinc-finger motif, which were common signatures to group II of WRKY family. The three-dimensional (3D) model of KoWRKY40 was formed by one α-helix and five β-strands. Evolutionary analysis revealed that KoWRKY40 has the closest homology with a WRKY protein from another mangrove plant Bruguiera gymnorhiza. The KoWRKY40 protein was verified to be exclusively located in nucleus of tobacco epidermis cells. Gene expression analysis demonstrated that KoWRKY40 was induced highly in the roots and leaves, but lowly in stems in K. obovata under cold stress. Overexpression of KoWRKY40 in Arabidopsis significantly enhanced the fresh weight, root length, and lateral root number of the transgenic lines under cold stress. KoWRKY40 transgenic Arabidopsis exhibited higher proline content, SOD, POD, and CAT activities, and lower MDA content, and H2O2 content than wild-type Arabidopsis under cold stress condition. Cold stress affected the expression of genes related to proline biosynthesis, antioxidant system, and the ICE-CBF-COR signaling pathway, including AtP5CS1, AtPRODH1, AtMnSOD, AtPOD, AtCAT1, AtCBF1, AtCBF2, AtICE1, AtCOR47 in KoWRKY40 transgenic Arabidopsis plants.
Conclusion
These results demonstrated that KoWRKY40 conferred cold tolerance in transgenic Arabidopsis by regulating plant growth, osmotic balance, the antioxidant system, and ICE-CBF-COR signaling pathway. The study indicates that KoWRKY40 is an important regulator involved in the cold stress response in plants.
Funder
National Natural Science Foundation of China
International Partnership Program of Chinese Academy of Sciences
National Key Research and Development Plan
Strategic Priority Research Program of the Chinese Academy of Sciences
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory
Publisher
Springer Science and Business Media LLC
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献