Analysis of polycomb repressive complex 2 (PRC2) subunits in Picea abies with a focus on embryo development

Author:

Zhu Tianqing,Hu Jiwen,Yang Xiaowei,Kong Lisheng,Ling Juanjuan,Wang Junhui,An Sanping

Abstract

Abstract Background Conserved polycomb repressive complex 2 (PRC2) mediates H3K27me3 to direct transcriptional repression and has a key role in cell fate determination and cell differentiation in both animals and plants. PRC2 subunits have undergone independent multiplication and functional divergence in higher plants. However, relevant information is still absent in gymnosperms. Results To launch gymnosperm PRC2 research, we identified and cloned the PRC2 core component genes in the conifer model species Picea abies, including one Esc/FIE homolog PaFIE, two p55/MSI homologs PaMSI1a and PaMSI1b, two E(z) homologs PaKMT6A2 and PaKMT6A4, a Su(z)12 homolog PaEMF2 and a PaEMF2-like fragment. Phylogenetic and protein domain analyses were conducted. The Esc/FIE homologs were highly conserved in the land plant, except the monocots. The other gymnospermous PRC2 subunits underwent independent evolution with angiospermous species to different extents. The relative transcript levels of these genes were measured in endosperm and zygotic and somatic embryos at different developmental stages. The obtained results proposed the involvement of PaMSI1b and PaKMT6A4 in embryogenesis and PaKMT6A2 and PaEMF2 in the transition from embryos to seedlings. The PaEMF2-like fragment was predominantly expressed in the endosperm but not in the embryo. In addition, immunohistochemistry assay showed that H3K27me3 deposits were generally enriched at meristem regions during seed development in P. abies. Conclusions This study reports the first characterization of the PRC2 core component genes in the coniferous species P. abies. Our work may enable a deeper understanding of the cell reprogramming process during seed and embryo development and may guide further research on embryonic potential and development in conifers.

Funder

Youth Science Fund of National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3