Transcriptomic and evolutionary analysis of the mechanisms by which P. argentatum, a rubber producing perennial, responds to drought

Author:

Nelson Andrew D. L.ORCID,Ponciano Grisel,McMahan Colleen,Ilut Daniel C.,Pugh N. Ace,Elshikha Diaa Eldin,Hunsaker Douglas J.,Pauli Duke

Abstract

Abstract Background Guayule (Parthenium argentatum Gray) is a drought tolerant, rubber producing perennial shrub native to northern Mexico and the US Southwest. Hevea brasiliensis, currently the world’s only source of natural rubber, is grown as a monoculture, leaving it vulnerable to both biotic and abiotic stressors. Isolation of rubber from guayule occurs by mechanical harvesting of the entire plant. It has been reported that environmental conditions leading up to harvest have a profound impact on rubber yield. The link between rubber biosynthesis and drought, a common environmental condition in guayule’s native habitat, is currently unclear. Results We took a transcriptomic and comparative genomic approach to determine how drought impacts rubber biosynthesis in guayule. We compared transcriptional profiles of stem tissue, the location of guayule rubber biosynthesis, collected from field-grown plants subjected to water-deficit (drought) and well-watered (control) conditions. Plants subjected to the imposed drought conditions displayed an increase in production of transcripts associated with defense responses and water homeostasis, and a decrease in transcripts associated with rubber biosynthesis. An evolutionary and comparative analysis of stress-response transcripts suggests that more anciently duplicated transcripts shared among the Asteraceae, rather than recently derived duplicates, are contributing to the drought response observed in guayule. In addition, we identified several deeply conserved long non-coding RNAs (lncRNAs) containing microRNA binding motifs. One lncRNA in particular, with origins at the base of Asteraceae, may be regulating the vegetative to reproductive transition observed in water-stressed guayule by acting as a miRNA sponge for miR166. Conclusions These data represent the first genomic analyses of how guayule responds to drought like conditions in agricultural production settings. We identified an inverse relationship between stress-responsive transcripts and those associated with precursor pathways to rubber biosynthesis suggesting a physiological trade-off between maintaining homeostasis and plant productivity. We also identify a number of regulators of abiotic responses, including transcription factors and lncRNAs, that are strong candidates for future projects aimed at modulating rubber biosynthesis under water-limiting conditions common to guayules’ native production environment.

Funder

Division of Integrative Organismal Systems

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3