Delivery of acetamiprid to tea leaves enabled by porous silica nanoparticles: efficiency, distribution and metabolism of acetamiprid in tea plants

Author:

Wang Xinyi,Yan Min,Zhou Jie,Song Wei,Xiao Yu,Cui Chuanjian,Gao Wanjun,Ke Fei,Zhu Jing,Gu Zi,Hou RuyanORCID

Abstract

Abstract Background Pesticide residue and its poor utilization remains problematic in agricultural development. To address the issue, a nano-pesticide has been developed by incorporating pesticide acetamiprid in porous silica nanoparticles. Results This nano-pesticide had an acetamiprid loading content of 354.01 mg g−1. Testing LC50 value against tea aphids of the commercial preparation was three times that of the nano-pesticide. In tea seedlings (Camellia sinensis L.), acetamiprid was transported upward from the stem to the young leaves. On day 30, the average retained concentrations in tea leaves treated with the commercial preparation were about 1.3 times of that in the nano-pesticide preparation. The residual concentrations of dimethyl-acetamiprid in leaves for plants treated with the commercial preparation were about 1.1 times of that in the nano-pesticide preparation. Untargeted metabolomics of by LC–MS on the young leaves of tea seedlings under nano-pesticide and commercial pesticide treatments showed significant numbers of differentially expressed metabolites (P < 0.05 and VIP > 1). Between the nano-pesticide treatment group and the commercial preparation treatment group there were 196 differentially expressed metabolites 2 h after treatment, 200 (7th day), 207 (21st day), and 201 (30th day) in negative ion mode, and 294 (2nd h), 356 (7th day), and 286 (30th day) in positive ion mode. Preliminary identification showed that the major differentially expressed metabolites were glutamic acid, salicylic acid, p-coumaric acid, ribonic acid, glutamine, naringenin diglucoside, sanguiin H4, PG (34:2) and epiafzelechin. Conclusions This work demonstrated that our nano-pesticide outperformed the conventional pesticide acetamiprid in terms of insecticidal activity and pesticide residue, and the absorption, transportation and metabolism of nano-pesticide in tea plant were different, which pave a new pathway for pest control in agricultural sector. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3