Author:
Li Dandan,Wang Qing,Xu Xin,Yu Jingsheng,Chen Zhiyu,Wei Bo,Wu Wei
Abstract
Abstract
Background
The investigation of molecular mechanisms involved in lipid metabolism plays a critical role for the genetic engineering of safflower (Carthamus tinctorius L.) to increase the oil accumulation level or to change the oil composition. Although transcript sequences are currently available for the leaves and flowers of safflower, a wide range scan of temporal transcripts at different stages of seed development has not been conducted for safflower.
Results
In this study, temporal transcriptome sequencing was executed at 10, 14, 18, and 22 days after flowering (DAF) to uncover the molecular networks concerned in the biosynthesis of unsaturated fatty acids (USFAs). The results revealed that the biosynthesis of fatty acids is a dominant cellular process from 10 to 14 DAF, while degradation mainly happens after 18 DAF. Significant expression changes of two genes, stearoyl-[acyl-carrier-protein] 9-desaturase gene (SAD) from 10 to 14 DAF and oleate desaturase (FAD2–1) from 14 to 18 DAF, were detected at the transcriptomic levels, and the temporal expression patterns revealed by the transcriptomic analysis were confirmed using quantitative real-time PCR experiments. In addition, 13 candidate transcription factors (TFs) involved in regulating the expression level of the FAD2–1 gene were identified.
Conclusions
These results create a link between fatty acid biosynthesis and gene expression at different developmental stages of the seeds, provide insight into the underlying lipid metabolism, and meanwhile lay an important foundation for the genetic engineering of safflower varieties. We have identified novel candidate genes, including TFs, that are worthy of further exploration.
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Li DJ, Zhou MD, Ramanatha RV. Characterization and evaluation of safflower germplasm. Beijing: geological publishing house; 1993. 260 p.
2. Li DJ. Progress of safflower (Carthamus tinctorius L.) research and production in China. In third international safflower conference, Beijing, China. 1993. pp. 35–46.
3. Dordas CA, Sioulas C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions[J]. Industrial Crops Products. 2008;27(1):75–85. https://doi.org/10.1016/j.indcrop.2007.07.020.
4. Corleto A. Safflower: a winter oil crop suitable for Mediterranean environments[J]. Acta Hortic. 2009;806:285–92.
5. Corleto A, Fernándezmartínez J, Velasco L, et al. Seed yield potential in farm introduction of safflower as an alternative oil crop in southern Italy[J]. Sesame Safflower Newsletter. 2005;29(1):57–70.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献