Transcriptome analysis of sugarcane reveals rapid defense response of SES208 to Xanthomonas albilineans in early infection

Author:

Ma Yaying,Yu Hongying,Lu Yijing,Gao Sanji,Fatima Mahpara,Ming Ray,Yue Jingjing

Abstract

Abstract Background Diseases are the major factor affecting the quality and yield of sugarcane during its growth and development. However, our knowledge about the factors regulating disease responses remain limited. The present study focuses on identifying genes regulating transcriptional mechanisms responsible for resistance to leaf scald caused by Xanthomonas albilineans in S. spontaneum and S. officinarum. Results After inoculation of the two sugarcane varieties SES208 (S. spontaneum) and LA Purple (S. officinarum) with Xanthomonas albilineans, SES208 exhibited significantly greater resistance to leaf scald caused by X. albilineans than did LA Purple. Using transcriptome analysis, we identified a total of 4323 and 1755 differentially expressed genes (DEGs) in inoculated samples of SES208 and LA Purple, respectively. Significantly, 262 DEGs were specifically identified in SES208 that were enriched for KEGG pathway terms such as plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Furthermore, we built a transcriptional regulatory co-expression network that specifically identified 16 and 25 hub genes in SES208 that were enriched for putative functions in plant-pathogen interactions, MAPK signaling, and plant hormone signal transduction. All of these essential genes might be significantly involved in resistance-regulating responses in SES208 after X. albilineans inoculation. In addition, we found allele-specific expression in SES208 that was associated with the resistance phenotype of SES208 when infected by X. albilineans. After infection with X. albilineans, a great number of DEGs associated with the KEGG pathways ‘phenylpropanoid biosynthesis’ and ‘flavonoid biosynthesis’ exhibited significant expression changes in SES208 compared to LA Purple that might contribute to superior leaf scald resistance in SES208. Conclusions We provided the first systematical transcriptome map that the higher resistance of SES208 is associated with and elicited by the rapid activation of multiple clusters of defense response genes after infection by X. albilineans and not merely due to changes in the expression of genes generically associated with stress resistance. These results will serve as the foundation for further understanding of the molecular mechanisms of resistance against X. albilineans in S. spontaneum.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3