Author:
Liao Rongli,Sun Weibang,Ma Yongpeng
Abstract
AbstractBackgroundIt has been recognized that a certain amount of habitat disturbance is a facilitating factor for the occurrence of natural hybridization, yet to date we are unaware of any studies exploring hybridization and reproductive barriers in those plants preferentially occupying disturbed habitats.Buddlejaplants (also called butterfly bush) generally do grow in disturbed habitats, and several species with hybrid origin have been proposed, based solely on morphological evidence.ResultsIn the present study, we test the hypothesis thatB. × wardiiis of natural hybridization origin in two sympatric populations of three taxa includingB. × wardiiand its parents (B. alternifoliaandB. crispa) plus 4 referenced parental populations, using four nuclear genes and three chloroplast intergenic spacers, as well as with 10 morphological characters. Our results suggest that at both sitesB. × wardiiis likely to be a hybrid betweenB. alternifoliaandB. crispa, and moreover, we confirm that most of the hybrids examined are F1s. That these plants are F1s is further supported by morphology, as no transgressive characters were detected.B. crispawas found to be the maternal parent in the Bahe (BH) population, from cpDNA evidence. However, in the Taji (TJ) population, the direction of hybridization was difficult to establish due to the shared cpDNA haplotypes betweenB. alternifoliaandB. crispa, however we still predicted a similar unidirectional hybridization pattern due to results from cross-specific pollination treatments which supported the “SI × SC rule”.ConclusionsThe presence of mainly F1hybrids can successfully impede gene flow and thus maintain species boundaries in parental species in a typical distribution ofBuddleja, i.e. in disturbed habitats.
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Reserve Talents for Academic and Technical Leaders of Middle-aged and Young People in Yunnan Province
Ten Thousand Talent Program of Yunnan Province
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献