Physiological and comparative proteomic analysis provides new insights into the effects of shade stress in maize (Zea mays L.)

Author:

Gao Jia,Liu Zheng,Zhao Bin,Liu Peng,Zhang Ji-WangORCID

Abstract

Abstract Background Shade stress, a universal abiotic stress, suppresses plant growth and production seriously. However, little is known regarding the protein regulatory networks under shade stress. To better characterize the proteomic changes of maize leaves under shade stress, 60% shade (S) and supplementary lighting (L) on cloudy daylight from tasseling stage to physiological maturity stage were designed, the ambient sunlight treatment was used as control (CK). Isobaric tag for relative and absolute quantification (iTRAQ) technology was used to determine the proteome profiles in leaves. Results Shading significantly decreased the SPAD value, net photosynthetic rate, and grain yield. During two experimental years, grain yields of S were reduced by 48 and 47%, and L increased by 6 and 11%, compared to CK. In total, 3958 proteins were identified by iTRAQ, and 2745 proteins were quantified including 349 proteins showed at least 1.2-fold changes in expression levels between treatments and CK. The differentially expressed proteins were classified into photosynthesis, stress defense, energy production, signal transduction, and protein and amino acid metabolism using the Web Gene Ontology Annotation Plot online tool. In addition, these proteins showed significant enrichment of the chloroplasts (58%) and cytosol (21%) for subcellular localization. Conclusions 60% shade induced the expression of proteins involved in photosynthetic electron transport chain (especially light-harvesting complex) and stress/defense/detoxification. However, the proteins related to calvin cycle, starch and sucrose metabolisms, glycolysis, TCA cycle, and ribosome and protein synthesis were dramatically depressed. Together, our results might help to provide a valuable resource for protein function analysis and also clarify the proteomic and physiological mechanism of maize underlying shade stress.

Funder

National Natural Science Funds

National Modern Agricultural Technology & Industry System

National Key Research and Development Project

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3