Author:
Ling Sumei,Zhao Yi,Sun Shaozhi,Zheng Dong,Sun Xiaomin,Zeng Rensen,Chen Dongmei,Song Yuanyuan
Abstract
Abstract
Background
The use of beneficial microorganisms as an alternative for pest control has gained increasing attention. The objective of this study was to screen beneficial rhizosphere bacteria with the ability to enhance tomato anti-herbivore resistance.
Results
Rhizosphere bacteria in tomato field from Fuqing, one of the four locations where rhizosphere bacteria were collected in Fujian, China, enhanced tomato resistance against the tobacco cutworm Spodoptera litura, an important polyphagous pest. Inoculation with the isolate T6–4 obtained from the rhizosphere of tomato field in Fuqing reduced leaf damage and weight gain of S. litura larvae fed on the leaves of inoculated tomato plants by 27% in relative to control. Analysis of 16S rRNA gene sequence identities indicated that the isolate T6–4 was closely related to Stenotrophomonas rhizophila supported with 99.37% sequence similarity. In the presence of S. litura infestation, inoculation with the bacterium led to increases by a 66.9% increase in protease inhibitor activity, 53% in peroxidase activity and 80% in polyphenol oxidase activity in the leaves of inoculated plants as compared to the un-inoculated control. Moreover, the expression levels of defense-related genes encoding allene oxide cyclase (AOC), allene oxide synthase (AOS), lipoxygenase D (LOXD) and proteinase inhibitor (PI-II) in tomato leaves were induced 2.2-, 1.7-, 1.4- and 2.7-fold, respectively by T6–4 inoculation.
Conclusion
These results showed that the tomato rhizosphere soils harbor beneficial bacteria that can systemically induce jasmonate-dependent anti-herbivore resistance in tomato plants.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Giuntini D, Graziani G, Lercari B, Fogliano V, Soldatini GF, Ranieri A. Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation. J Agric Food Chem. 2005;53:3174–81.
2. Saito T, Takagi M, Tezuka T, Ogawara T, Wari D. Augmenting Nesidiocoris tenuis (Nesidiocoris) with a factitious diet of Artemia cysts to control Bemisia tabaci (Gennadius) on tomato plants under greenhouse conditions. Insects. 2021;12(3):265.
3. Bano A, Muqarab R. Plant defence induced by PGPR against Spodoptera litura in tomato (Solanum lycopersicum L.). Plant Biol. 2017;19:406–12.
4. Tong H, Su Q, Zhou X, Bai L. Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. J Pest Sci. 2013;86(3):599–609.
5. Shad SA, Sayyed AH, Fazal S, Saleem MA, Zaka SM, Ali M. Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura fab. (Lepidoptera: Noctuidae) J Pest Sci. 2012;85(1):153–62.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献