Abstract
Abstract
Background
Most orchid species have been shown to be severely pollination limited, and the factors affecting reproductive success have been widely studied. However, the factors determining the reproductive success vary from species to species. Habenaria species typically produce nectar but exhibit variable fruit set and reproductive success among species. Here, we investigated the influence of the flowering plant density, inflorescence size, breeding system, and pollinator behaviour on the reproductive success of two rewarding Habenaria species.
Results
Our observations indicated that Habenaria limprichtii and H. petelotii co-occur in roadside verge habitats and present overlapping flowering periods. Both species were pollination limited, although H. limprichtii produced more fruits than H. petelotii under natural conditions during the 3-year investigation. H. petelotii individuals formed distinct patches along roadsides, while nearly all H. limprichtii individuals clustered together. The bigger floral display and higher nectar sugar concentration in H. limprichtii resulted in increased attraction and visits from pollinators. Three species of effective moths pollinated for H. limprichtii, while Thinopteryx delectans (Geometridae) was the exclusive pollinator of H. petelotii. The percentage of viable seeds was significantly lower for hand geitonogamy than for hand cross-pollination in both species. However, H. limprichtii may often be geitonogamously pollinated based on the behaviours of the pollinators and viable embryo assessment.
Conclusions
In anthropogenic interference habitats, the behaviours and abundance of pollinators influence the fruit set of the two studied species. The different pollinator assemblages in H. limprichtii can alleviate pollinator specificity and ensure reproductive success, whereas the more viable embryos of natural fruit seeds in H. petelotii suggested reducing geitonogamy by pollinators in the field. Our results indicate that a quantity-quality trade-off must occur between species with different breeding strategies so that they can fully exploit the existing given resources.
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Cozzolino S, Widmer A. Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol. 2005;20(9):487–94. https://doi.org/10.1016/j.tree.2005.06.004.
2. Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Bot J Linnean Soc. 2015;84:1–54.
3. Schmid-Hempel P. Efficient nectar-collecting by honeybees I. economic models. J Anim Ecol. 1987;56(1):209–18. https://doi.org/10.2307/4810.
4. Neiland MR, Wilcock CC. Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot. 1998;85(12):1657–71. https://doi.org/10.2307/2446499.
5. Suetsugu K, Naito RS, Fukushima S, Kawakita A, Kato M. Pollination system and the effect of inflorescence size on fruit set in the deceptive orchid cephalanthera falcata. J Plant Res. 2015;128(4):585–94. https://doi.org/10.1007/s10265-015-0716-9.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献