Author:
Fu Chao,Du Jiuyuan,Tian Xiuling,He Zhonghu,Fu Luping,Wang Yue,Xu Dengan,Xu Xiaoting,Xia Xianchun,Zhang Yan,Cao Shuanghe
Abstract
Abstract
Background
Wheat is a momentous crop and feeds billions of people in the world. The improvement of wheat yield is very important to ensure world food security. Normal development of grain is the essential guarantee for wheat yield formation. The genetic study of grain phenotype and identification of key genes for grain filling are of great significance upon dissecting the molecular mechanism of wheat grain morphogenesis and yield potential.
Results
Here we identified a pair of defective kernel (Dek) isogenic lines, BL31 and BL33, with plump and shrunken mature grains, respectively, and constructed a genetic population from the BL31/BL33 cross. Ten chromosomes had higher frequency of polymorphic single nucleotide polymorphism (SNP) markers between BL31 and BL33 using Wheat660K chip. Totally 783 simple sequence repeat (SSR) markers were chosen from the above chromosomes and 15 of these were integrated into two linkage groups using the genetic population. Genetic mapping identified three QTL, QDek.caas-3BS.1, QDek.caas-3BS.2 and QDek.caas-4AL, explaining 14.78–18.17%, 16.61–21.83% and 19.08–28.19% of phenotypic variances, respectively. Additionally, five polymorphic SNPs from Wheat660K were successfully converted into cleaved amplified polymorphic sequence (CAPS) markers and enriched the target regions of the above QTL. Biochemical analyses revealed that BL33 has significantly higher grain sucrose contents at filling stages and lower mature grain starch contents than BL31, indicating that the Dek QTL may be involved in carbohydrate metabolism. As such, the candidate genes for each QTL were predicated according to International Wheat Genome Sequence Consortium (IWGSC) RefSeq v1.0.
Conclusions
Three major QTL for Dek were identified and their causal genes were predicted, laying a foundation to conduct fine mapping and dissect the regulatory mechanism underlying Dek trait in wheat.
Funder
National Key Research and Development Programs of China
National Natural Science Foundation of China
CAAS Science and Technology Innovation Program
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Cheng SH, Yang SM, Zhang BQ, Ji KZ, Zhao BH, Gao DR. Kernel plumpness and filling index in wheat (Triticum aestivum L.). Jiangsu J Agric Sci. 1993;9:7–10.
2. Li FJ, Wen WE, He ZH, Liu JD, Jin H, Cao SH, et al. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theor Appl Genet. 2018;131:1903–24.
3. Neuffer MG, Sheridan WF. Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics. 1980;95:929–44.
4. Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, et al. The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci. 2002;99:5460–5.
5. Chen XZ, Feng F, Qi WW, Xu LM, Yao DS, Wang Q, et al. Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Mol Plant. 2017;10:427–41.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献