A tandem CCCH type zinc finger protein gene CpC3H3 from Chimonanthus praecox promotes flowering and enhances drought tolerance in Arabidopsis

Author:

Liu Huamin,Xiao Shiqi,Sui Shunzhao,Huang Renwei,Wang Xia,Wu Huafeng,Liu Xia

Abstract

Abstract Background CCCH-type zinc finger proteins play important roles in plant development and biotic/abiotic stress responses. Wintersweet (Chimonanthus praecox) is a popular ornamental plant with strong resistance to various stresses, which is a good material for exploring gene resource for stress response. In this study, we isolated a CCCH type zinc finger protein gene CpC3H3 (MZ964860) from flower of wintersweet and performed functional analysis with a purpose of identifying gene resource for floral transition and stress tolerance. Results CpC3H3 was predicted a CCCH type zinc finger protein gene encoding a protein containing 446 amino acids with five conserved C-X8-C-X5-C-X3-H motifs. CpC3H3 was localized in the cell membrane but with a nuclear export signal at the N-terminal. Transcripts of CpC3H3 were significantly accumulated in flower buds at floral meristem formation stage, and were induced by polyethylene glycol. Overexpression of CpC3H3 promoted flowering, and enhanced drought tolerance in transgenic A. thaliana. CpC3H3 overexpression affects the expression level of genes involved in flower inducement and stress responses. Further comparative studies on physiological indices showed the contents of proline and soluble sugar, activity of peroxidase and the rates of electrolyte leakage were significantly increased and the content of malondialdehyde and osmotic potential was significantly reduced in transgenic A. thaliana under PEG stress. Conclusion Overall, CpC3H3 plays a role in flowering inducement and drought tolerance in transgenic A. thaliana. The CpC3H3 gene has the potential to be used to promote flowering and enhance drought tolerance in plants.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3