Identification and function analysis of yellow-leaf mutant (YX-yl) of broomcorn millet

Author:

Wang Yushen,Wang Junjie,Chen Liqing,Meng Xiaowei,Zhen Xiaoxi,Liang Yinpei,Han Yuanhuai,Li Hongying,Zhang Bin

Abstract

Abstract Background Broomcorn millet is highly tolerant to drought and barren soil. Changes in chlorophyll content directly affect leaf color, which subsequently leadsleading to poor photosynthetic performance and reduced crop yield. Herein, we isolated a yellow leaf mutant (YX-yl) using a forward genetics approach and evaluated its agronomic traits, photosynthetic pigment content, chloroplast ultrastructure, and chlorophyll precursors. Furthermore, the molecular mechanism of yellowing was explored using transcriptome sequencing. Results The YX-yl mutant showed significantly decreased plant height and low yield. The leaves exhibited a yellow-green phenotype and poor photosynthetic capacity during the entire growth period. The content of chlorophyll a, chlorophyll b, and carotenoids in YX-yl leaves was lower than that in wild-type leaves. Chlorophyll precursor analysis results showed that chlorophyll biosynthesis in YX-yl was hindered by the conversion of porphobilinogen to protoporphyrin IX. Examination of chloroplast ultrastructure in the leaves revealed that the chloroplasts of YX-yl accumulated on one side of the cell. Moreover, the chloroplast structure of YX-yl was degraded. The inner and outer membranes of the chloroplasts could not be distinguished well. The numbers of grana and grana thylakoids in the chloroplasts were low. The transcriptome of the yellowing mutant YX-yl was sequenced and compared with that of the wild type. Nine chlorophyll-related genes with significantly different expression profiles were identified: PmUROD, PmCPO, PmGSAM, PmPBDG, PmLHCP, PmCAO, PmVDE, PmGluTR, and PmPNPT. The proteins encoded by these genes were located in the chloroplast, chloroplast membrane, chloroplast thylakoid membrane, and chloroplast matrix and were mainly involved in chlorophyll biosynthesis and redox-related enzyme regulation. Conclusions YX-yl is an ideal material for studying pigment metabolism mechanisms. Changes in the expression patterns of some genes between YX-yl and the wild type led to differences in chloroplast structures and enzyme activities in the chlorophyll biosynthesis pathway, ultimately resulting in a yellowing phenotype in the YX-yl mutant. Our findings provide an insight to the molecular mechanisms of leaf color formation and chloroplast development in broomcorn millet.

Funder

Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau

The Scientific and Technological Innovation Foundation of Higher Education Institutions in Shanxi

Scientific and Technologial Innovation Programs of Shanxi Agricultural University

Excellent doctors come to Shanxi to reward scientific research projects

National Natural Science Foundation of China

Shanxi Province Science Found for Excellent Young Scholar

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3