Author:
Lin Xiaoli,Huang Yongping,Rao Yuchun,Ouyang Linjuan,Zhou Dahu,Zhu Changlan,Fu Junru,Chen Chunlian,Yin Jianhua,Bian Jianmin,He Haohua,Zou Guoxing,Xu Jie
Abstract
Abstract
Background
Phytochromes are important photoreceptors in plants, and play essential roles in photomorphogenesis. The functions of PhyA and PhyB in plants have been fully analyzed, while those of PhyC in plant are not well understood.
Results
A rice mutant, late heading date 3 (lhd3), was characterized, and the gene LHD3 was identified with a map-based cloning strategy. LHD3 encodes phytochrome C in rice. Animo acid substitution in OsphyC disrupted its interaction with OsphyB or itself, restraining functional forms of homodimer or heterodimer formation. Compared with wild-type plants, the lhd3 mutant exhibited delayed flowering under both LD (long-day) and SD (short-day) conditions, and delayed flowering time was positively associated with the day length via the Ehd1 pathway. In addition, lhd3 showed a pale-green-leaf phenotype and a slower chlorophyll synthesis rate during the greening process. The transcription patterns of many key genes involved in photoperiod-mediated flowering and chlorophyll synthesis were altered in lhd3.
Conclusion
The dimerization of OsPhyC is important for its functions in the regulation of chlorophyll synthesis and heading. Our findings will facilitate efforts to further elucidate the function and mechanism of OsphyC and during light signal transduction in rice.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献