Author:
Xie Wanfeng,Xu Xiaomei,Qiu Wenjing,Lai Xiaolin,Liu Mengxia,Zhang Feiping
Abstract
Abstract
Background
Pine wilt disease (PWD) is a destructive disease that endangers pine trees, resulting in the wilting, with yellowing and browning of the needles, and eventually the death of the trees. Previous studies showed that the Avr9/Cf-9 rapidly elicited (PmACRE1) gene was downregulated by Bursaphelenchus xylophilus infection, suggesting a correlation between PmACRE1 expression and pine tolerance. Here, we used the expression of PmACRE1 in Arabidopsis thaliana to evaluate the role of PmACRE1 in the regulation of host defence against B. xylophilus infection.
Results
Our results showed that the transformation of PmACRE1 into A. thaliana enhanced plant resistance to the pine wood nematode (PWN); that is, the leaves of the transgenic line remained healthy for a longer period than those of the blank vector group. Ascorbate peroxidase (APX) activity and total phenolic acid and total flavonoid contents were higher in the transgenic line than in the control line. Widely targeted metabolomics analysis of the global secondary metabolites in the transgenic line and the vector control line showed that the contents of 30 compounds were significantly different between these two lines; specifically, the levels of crotaline, neohesperidin, nobiletin, vestitol, and 11 other compounds were significantly increased in the transgenic line. The studies also showed that the ACRE1 protein interacted with serine hydroxymethyltransferase, catalase domain-containing protein, myrosinase, dihydrolipoyl dehydrogenase, ketol-acid reductoisomerase, geranylgeranyl diphosphate reductase, S-adenosylmethionine synthase, glutamine synthetase, and others to comprehensively regulate plant resistance.
Conclusions
Taken together, these results indicate that PmACRE1 has a potential role in the regulation of plant defence against PWNs.
Funder
Provincial Natural Science Foundation of Fujian, China
Scientific Research Foundation for Young Teachers of Jinshan College, Fujian Agriculture and Forestry University
Research Foundation of Education Department of Fujian Province
National Key R & D Program of China
National Natural Science Foundation of China
Forestry Science and Technology Project of Fujian Province
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Mota MM, Futai K, Vieira P. Pine wilt disease and the pinewood nematode, Bursaphelenchus xylophilus. In: Ciancio A, Mukerji K, editors. Integrated management of fruit crops nematodes. Integrated management of plant pests and diseases. Dordrecht: Springer; 2009. p. 253–74.
2. Ryss AY, Kulinich OA, Sutherland JR. Pine wilt disease: a short review of worldwide research. Forest Studies China. 2011;13:132–8.
3. Sun Y. The discovery of pine wood nematode in Nanjing Sun Yat-sen Mausoleum. Jiangsu For Sci Technol. 1982;04(27):47.
4. Wang W, Peng W, Liu X, He G, Cai Y. Spatiotemporal dynamics and factors driving the distributions of pine wilt disease-damaged forests in China. Forests. 2022;13:261.
5. Pine wood nematode endemic areas in 2022. State Forestry and Grassland Administration Announcement No. 6, 2022. http://www.forestry.gov.cn/main/6206/20220406/151041215456755.html. Accessed 6 Apr 2022.