Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor

Author:

Li Junpeng,Yuan Fang,Liu Yanlu,Zhang Mingjing,Liu Yun,Zhao Yang,Wang Baoshan,Chen Min

Abstract

Abstract Background Salt, a common environmental stress factor, inhibits plant growth and reduces yields. Melatonin is a pleiotropic molecule that regulates plant growth and can alleviate environmental stress in plants. All previous research on this topic has focused on the use of melatonin to improve the relatively low salt tolerance of glycophytes by promoting growth and enhancing antioxidant ability. It is unclear whether exogenous melatonin can increase the salt tolerance of halophytes, particularly recretohalophytes, by enhancing salt secretion from the salt glands. Results To examine the mechanisms of melatonin-mediated salt tolerance, we explored the effects of exogenous applications of melatonin on the secretion of salt from the salt glands of Limonium bicolor (a kind of recretohalophyte) seedlings and on the expression of associated genes. A pretreatment with 5 μM melatonin significantly improved the growth of L. bicolor seedlings under 300 mM NaCl. Furthermore, exogenous melatonin significantly increased the dry weight and endogenous melatonin content of L. bicolor. In addition, this treatment reduced the content of Na+ and Cl in leaves, but increased the K+ content. Both the salt secretion rate of the salt glands and the expression level of genes encoding ion transporters (LbHTK1, LbSOS1, LbPMA, and LbNHX1) and vesicular transport proteins (LbVAMP721, LbVAP27, and LbVAMP12) were significantly increased by exogenous melatonin treatment. These results indicate that melatonin improves the salt tolerance of the recretohalophyte L. bicolor via the upregulation of salt secretion by the salt glands. Conclusions Our results showed that melatonin can upregulate the expression of genes encoding ion transporters and vesicle transport proteins to enhance salt secretion from the salt glands. Combining the results of the current study with previous research, we formulated a novel mechanism by which melatonin increases salt secretion in L. bicolor. Ions in mesophyll cells are transported to the salt glands through ion transporters located at the plasma membrane. After the ions enter the salt glands, they are transported to the collecting chamber adjacent to the secretory pore through vesicle transport and ions transporter and then are secreted from the secretory pore of salt glands, which maintain ionic homeostasis in the cells and alleviate NaCl-induced growth inhibition.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3