Author:
Liu Chang,Lv Tingting,Shen Yanhua,Liu Tao,Liu Mingming,Hu Jian,Liu Sizhang,Jiang Yang,Zhang Meiping,Zhao Mingzhu,Wang Kangyu,Wang Yi
Abstract
AbstractPanax ginseng is an important medicinal plant, and ginsenosides are the main bioactive molecules of ginseng. The TCP (TBI, CYC, PCF) family is a group of transcription factors (TFs) that play an important role in plant growth and development, hormone signalling and synthesis of secondary metabolites. In our study, 78 PgTCP transcripts were identified from the established ginseng transcriptome database. A phylogenetic tree analysis showed that the 67 PgTCP transcripts with complete open reading frames were classified into three subfamilies, including CIN, PCF, and CYC/TB1. Protein structure analysis showed that PgTCP genes had bHLH structures. Chromosomal localization analysis showed that 63 PgTCP genes were localized on 17 of the 24 chromosomes of the Chinese ginseng genome. Expression pattern analysis showed that PgTCP genes differed among different lineages and were spatiotemporally specific. Coexpression network analysis indicated that PgTCP genes were coexpressed and involved in plant activities or metabolic regulation in ginseng. The expression levels of PgTCP genes from class I (PCF) were significantly downregulated, while the expression levels of PgTCP genes from class II (CIN and CYC/TB1) were upregulated, suggesting that TCP genes may be involved in the regulation of secondary metabolism in ginseng. As the PgTCP26-02 gene was found to be related to ginsenoside synthesis, its predicted protein structure and expression pattern were further analysed. Our results provide new insights into the origin, differentiation, evolution and function of the PgTCP gene family in ginseng, as well as the regulation of plant secondary metabolism.
Funder
Bureau of Science and Technology of Jilin Province
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献