RAD-seq as an effective strategy for heterogenous variety identification in plants—a case study in Italian Ryegrass (Lolium multiflorum)

Author:

Yu Qingqing,Ling Yao,Xiong Yanli,Zhao Wenda,Xiong Yi,Dong Zhixiao,Yang Jian,Zhao Junming,Zhang Xinquan,Ma Xiao

Abstract

AbstractThe primary approach for variety distinction in Italian ryegrass is currently the DUS (distinctness, uniformity and stability) test based on phenotypic traits. Considering the diverse genetic background within the population and the complexity of the environment, however, it is challenging to accurately distinguish varieties based on DUS criteria alone. In this study, we proposed the application of high-throughput RAD-seq to distinguish 11 Italian ryegrass varieties with three bulks of 50 individuals per variety. Our findings revealed significant differences among the 11 tested varieties. The PCA, DAPC and STRUCTURE analysis indicated a heterogeneous genetic background for all of them, and the AMOVA analysis also showed large genetic variance among these varieties (ΦST = 0.373), which were clearly distinguished based on phylogenetic analysis. Further nucleotide diversity (Pi) analysis showed that the variety ‘Changjiang No.2’ had the best intra-variety consistency among 11 tested varieties. Our findings suggest that the RAD-seq could be an effectively alternative method for the variety distinction of Italian ryegrass, as well as a potential tool for open-pollinated varieties (OPVs) of other allogamous species.

Funder

grants from Sichuan Provincial Plant Breeding Program for Forage herbage in the 14th Five-Year Plan period

Sichuan Provincial Science and technology support program

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3