Author:
Li Caijing,Liu Jindong,Bian Jianxin,Jin Tao,Zou Baoli,Liu Shilei,Zhang Xiangyu,Wang Peng,Tan Jingai,Wu Guangliang,Chen Qin,Wang Yanning,Zhong Qi,Huang Shiying,Yang Mengmeng,Huang Tao,He Haohua,Bian Jianmin
Abstract
Abstract
Background
Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage.
Results
In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P < 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 °C, in which there were five QTLs (qSR2–2, qSR3–1, qSR3–2, qSR3–3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2–1, qSR3–4, qSR3–5, qSR3–6, qSR3–7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9.
Conclusion
This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Dai LY, Ye CR, Yu TQ, Xu FR. Studies on cold tolerance of rice , Oryza sativa L:I. Description on types of cold injury and classifications of evaluation methods on cold tolerance in rice. Southwest China J Agric Sci. 2002;15(1):41–5.
2. Zhang Q, Chen Q, Wang S. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice. 2014;7:24.
3. Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci U S A. 2008;105(34):12623–8.
4. Andaya VC, Tai TH. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet. 2006;113:467–75.
5. Andaya VC, Tai TH. Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Breed. 2007;20:349–58.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献