Codon usage patterns across seven Rosales species

Author:

Zhang Yao,Shen Zenan,Meng Xiangrui,Zhang Liman,Liu Zhiguo,Liu Mengjun,Zhang Fa,Zhao Jin

Abstract

Abstract Background Codon usage bias (CUB) analysis is an effective method for studying specificity, evolutionary relationships, and mRNA translation and discovering new genes among various species. In general, CUB analysis is mainly performed within one species or between closely related species and no such study has been applied among species with distant genetic relationships. Here, seven Rosales species with high economic value were selected to conduct CUB analysis. Results The results showed that the average GC1, GC2 and GC3 contents were 51.08, 40.52 and 43.12%, respectively, indicating that the A/T content is more abundant and the Rosales species prefer A/T as the last codon. Neutrality plot and ENc plot analysis revealed that natural selection was the main factor leading to CUB during the evolution of Rosales species. All 7 Rosales species contained three high-frequency codons, AGA, GTT and TTG, encoding Arg, Val and Leu, respectively. The 7 Rosales species differed in high-frequency codon pairs and the distribution of GC3, though the usage patterns of closely related species were more consistent. The results of the biclustering heat map among 7 Rosales species and 20 other species were basically consistent with the results of genome data, suggesting that CUB analysis is an effective method for revealing evolutionary relationships among species at the family or order level. In addition, chlorophytes prefer using G/C as ending codon, while monocotyledonous and dicotyledonous plants prefer using A/T as ending codon. Conclusions The CUB pattern among Rosales species was mainly affected by natural selection. This work is the first to highlight the CUB patterns and characteristics of Rosales species and provides a new perspective for studying genetic relationships across a wide range of species.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3