Physcomitrium patens CAD1 has distinct roles in growth and resistance to biotic stress

Author:

Jiang Shan,Tian Xu,Huang Xiaolong,Xin Jiankang,Yan HuiqingORCID

Abstract

Abstract Background Physcomitrium patens provides an evolutionary link between green algae and vascular plants. Although the genome of P. patens includes orthologs of all the core lignin biosynthetic enzymes, the occurrence of lignin in moss is very controversial. Besides, little information is available about the lignin enzymes in moss to date. For example, cinnamyl alcohol dehydrogenase (CAD) is a crucial enzyme that catalyzes the last step of the lignin biosynthetic pathway, suggesting an ideal way to study the evolutionary process. By investigating the functions of CAD in evolution, this study will elucidate the evolutionary roles of lignin-like in the early stage of land colonization. Results CAD multigene family in P. patens is composed of four genes. The PpCADs contain a conserved glycine-rich domain to catalyze NADPH-dependent reduction to their corresponding alcohols, indicating that PpCADs have the potential to synthesize monolignols by bioinformatics analysis. Even though PpCAD1 could produce lignin in theory, no conventional monomer was detected in the cell wall or cytoplasm of PpCAD1_OE plants. However, the phenylpropanoids were promoted in PpCAD1_OE transformants to modify gametophore architecture and development, making the distribution of phyllids more scarcity and the moss colony more giant, possibly due to the enhanced expression of the AUX-IAA family. The transcripts of at least one gene encoding the enzyme in the lignin biosynthetic pathway were increased in PpCAD1_OE plants. In addition, the PpCAD1_OE gametophore inhibited the Botrytis cinerea assault mainly by enhanced phenylpropanoids in the cell wall instead of influencing transcripts of defense genes pathogenesis-related 10 (PR10) and nonexpresser of PR genes 1 (NPR1). Likewise, ectopic expression of PpCAD1 in Arabidopsis led to a significant increase in lignin content, exhibiting chunky roots, robust seedlings, advanced flowering, and efficient resistance against pathogens. Conclusion PpCAD occurs in more than one copy, suggesting functional divergence in the ancestral plant. PpCAD1 catalyzes monolignol biosynthesis and has homologous functions with vascular plants. Despite no detected conventional monolignol, the increased phenylpropanoids in the PpCAD1_OE gametophore, possibly intermediate metabolites in the lignin pathway, had conserved functions during the evolution of terrestrial plants. The results inferred that the lignin enzyme of the early non-vascular plant played roles in stem elongation and resistance against pathogens of P. patens during the conquest of land.

Funder

National Natural Science Foundation of China

Guizhou Province Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3