Brassinosteroids and gibberellic acid actively regulate the zinc detoxification mechanism of Medicago sativa L. seedlings

Author:

Ren Ying,Li Xue,Liang Jingwei,Wang Sijia,Wang Zhihao,Chen Hui,Tang Ming

Abstract

Abstract Background Zinc is one of the essential trace elements in plants. There are few studies on the phytohormone to rescue the toxicity of excessive zinc to plants. The aim of this research was to evaluate the alleviating effects of brassinosteroids (BR) and gibberellic acid (GA) on the toxicity of Medicago sativa L. (M. sativa) induced by excessive zinc. Results After zinc, BR and GA were applied to M. sativa seedlings for 7 weeks, their physiological and biochemical properties and gene expression patterns were evaluated. BR and GA significantly weakened the inhibition effect of zinc stress on growth and biomass of M. sativa. Under zinc stress, the zinc accumulation in M. sativa roots was over 5 times that in shoots. Application of BR and GA reduced zinc accumulation in roots. The content of lipid peroxides in M. sativa decreased and the activity of antioxidant enzymes increased under BR and GA treatments. In addition, BR and GA treatment down-regulated the transcription level of MsZIP1/3/5, the transporters of zinc uptake in root cells. And BR and GA up-regulated the expressions of zinc efflux, chelation, vacuolar storage and long-distance transport related genes: MsZIP7, MsHMA1, MsZIF1, MsMTP1, MsYSL1 and MsNAS1. Conclusions Our findings further showed that BR and GA application to M. sativa under zinc stress can reduce zinc accumulation, promote the response of the antioxidant defense system, and actively regulate the mechanism of heavy metal detoxification. Notably, 100 nM BR performed slightly better than 100 nM GA in all aspects of the detoxification of M. sativa by excessive zinc.

Funder

Science and Technology Planning Project of Guangdong Province

Laboratory of Lingnan Modern Agriculture Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3