Functional analysis of PagNAC045 transcription factor that improves salt and ABA tolerance in transgenic tobacco

Author:

Zhang Xuemei,Cheng Zihan,Fan Gaofeng,Yao Wenjing,Li Wei,Chen Sixue,Jiang Tingbo

Abstract

Abstract Background Salt stress causes inhibition of plant growth and development, and always leads to an increasing threat to plant agriculture. Transcription factors regulate the expression of various genes for stress response and adaptation. It’s crucial to reveal the regulatory mechanisms of transcription factors in the response to salt stress. Results A salt-inducible NAC transcription factor gene PagNAC045 was isolated from Populus alba×P. glandulosa. The PagNAC045 had a high sequence similarity with NAC045 (Potri.007G099400.1) in P. trichocarpa, and they both contained the same conserved motifs 1 and 2, which constitute the highly conserved NAM domain at the N-terminus. Protein-protein interaction (PPI) prediction showed that PagNAC045 potentially interacts with many proteins involved in plant hormone signaling, DNA-binding and transcriptional regulation. The results of subcellular localization and transient expression in tobacco leaves confirmed the nuclear localization of PagNAC045. Yeast two-hybrid revealed that PagNAC045 protein exhibits transcriptional activation property and the activation domain located in its C-terminus. In addition, the 1063 bp promoter of PagNAC045 was able to drive GUS gene expression in the leaves and roots. In poplar leaves and roots, PagNAC045 expression increased significantly by salt and ABA treatments. Tobacco seedlings overexpressing PagNAC045 exhibited enhanced tolerance to NaCl and ABA compared to the wild-type (WT). Yeast one-hybrid assay demonstrated that a bHLH104-like transcription factor can bind to the promoter sequence of PagNAC045. Conclusion The PagNAC045 functions as positive regulator in plant responses to NaCl and ABA-mediated stresses.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3