Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.)

Author:

Zhou Huiwen,Xiao Xiaojun,Asjad Ali,Han Depeng,Zheng Wei,Xiao Guobin,Huang Yingjin,Zhou Qinghong

Abstract

Abstract Background The exchangeable aluminum (Al), released from the acid soils, is another addition to the environmental stress factors in the form of Al toxicity stress. Al stress affects the normal crop development and reduces the overall yield of rapeseed (Brassica napus L.). The response mechanism of plants to Al toxicity is complicated and difficult to understand with few QTL related studies in rapeseed under Al toxicity stress. Result Using 200,510 SNPs developed by SLAF-seq (specific-locus amplified fragment sequencing) technology, we carried out the genome-wide association analysis (GWAS) in a population of 254 inbred lines of B. napus with large genetic variation and Al-tolerance differences. There were 43 SNPs significantly associated with eight Al-tolerance traits in the seedling stage were detected on 14 chromosomes, and 777 candidate genes were screened at the flanking 100 kb region of these SNPs. Moreover, RNA-seq detected 8291 and 5341 DEGs (the differentially expressed gene) in the Al -tolerant line (ATL) and -sensitive line (ASL), respectively. Based on integration of GWAS and RNA-seq analysis, 64 candidate genes from GWAS analysis differentially expressed at least once in 6 h vs 0 h or 24 h vs 0 h conditions in ATL or ASL. Moreover, four out of sixty-four candidate genes (BnaA03g30320D, BnaA10g11500D, BnaC03g38360D and BnaC06g30030D) were differentially expressed in both 6 h and 24 h compared to 0 h (control) conditions in both lines. The proposed model based on the candidate genes excavated in this study highlighted that Al stress disturb the oxidation-redox balance, causing abnormal synthesis and repair of cell wall and ABA signal transduction, ultimately resulting in inhibition of root elongation. Conclusions The integration of GWAS and transcriptome analysis provide an effective strategy to explore the SNPs and candidate genes, which has a potential to develop molecular markers for breeding Al tolerant rapeseed varieties along with theoretical basis of molecular mechanisms for Al toxicity response of Brassica napus plants.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3