Genome-wide identification and expression analysis of VQ gene family under abiotic stress in Coix lacryma-jobi L.

Author:

Wang Yujiao,Lu Xianyong,Fu Yuhua,Wang Hongjuan,Yu Chun,Chu Jiasong,Jiang Benli,Zhu Jiabao

Abstract

Abstract Background Valine-glutamine (VQ) proteins are non-specific plant proteins that have a highly conserved motif: FxxhVQxhTG. These proteins are involved in the development of various plant organs such as seeds, hypocotyls, flowers, leaves and also play a role in response to salt, drought and cold stresses. Despite their importance, there is limited information available on the evolutionary and structural characteristics of VQ family genes in Coix lacryma-jobi. Results In this study, a total of 31 VQ genes were identified from the coix genome and classified into seven subgroups (I–VII) based on phylogenetic analysis. These genes were found to be unevenly distributed on 10 chromosomes. Gene structure analysis revealed that these genes had a similar type of structure within each subfamily. Moreover, 27 of ClVQ genes were found to have no introns. Conserved domain and multiple sequence alignment analysis revealed the presence of a highly conserved sequences in the ClVQ protein. This research utilized quantitative real-time PCR (qRT-PCR) and promoter analysis to investigate the expression of ClVQ genes under different stress conditions. Results showed that most ClVQ genes responded to polyethylene glycol, heat treatment, salt, abscisic acid and methyl jasmonate treatment with varying degrees of expression. Furthermore, some ClVQ genes exhibited significant correlation in expression changes under abiotic stress, indicating that these genes may act synergistically in response to adversarial stress. Additionally, yeast dihybrid verification revealed an interaction between ClVQ4, ClVQ12, and ClVQ26. Conclusions This study conducted a genome-wide analysis of the VQ gene family in coix, including an examination of phylogenetic relationships, conserved domains, cis-elements and expression patterns. The goal of the study was to identify potential drought resistance candidate genes, providing a theoretical foundation for molecular resistance breeding.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3