LncRNA TCONS_00021861 is functionally associated with drought tolerance in rice (Oryza sativa L.) via competing endogenous RNA regulation

Author:

Chen Jiajia,Zhong Yuqing,Qi Xin

Abstract

Abstract Background Water deficit is an abiotic stress that retards plant growth and destabilizes crop production. Long non coding RNAs (lncRNAs) are a class of non-coding endogenous RNAs that participate in diverse cellular processes and stress responses in plants. lncRNAs could function as competing endogenous RNAs (ceRNA) and represent a novel layer of gene regulation. However, the regulatory mechanism of lncRNAs as ceRNA in drought stress response is yet unclear. Results In this study, we performed transcriptome-wide identification of drought-responsive lncRNAs in rice. Thereafter, we constructed a lncRNA-mediated ceRNA network by analyzing competing relationships between mRNAs and lncRNAs based on ceRNA hypothesis. A drought responsive ceRNA network with 40 lncRNAs, 23 miRNAs and 103 mRNAs was obtained. Network analysis revealed TCONS_00021861/miR528-3p/YUCCA7 regulatory axis as a hub involved in drought response. The miRNA-target expression and interaction were validated by RT-qPCR and RLM-5’RACE. TCONS_00021861 showed significant positive correlation (r = 0.7102) with YUCCA7 and negative correlation with miR528-3p (= -0.7483). Overexpression of TCONS_00021861 attenuated the repression of miR528-3p on YUCCA7, leading to increased IAA (Indole-3-acetic acid) content and auxin overproduction phenotypes. Conclusions TCONS_00021861 could regulate YUCCA7 by sponging miR528-3p, which in turn activates IAA biosynthetic pathway and confer resistance to drought stress. Our findings provide a new perspective of the regulatory roles of lncRNAs as ceRNAs in drought resistance of rice.

Funder

National Natural Science Foundation of China

Technology R&D Program of Suzhou

Qinglan Project of Jiangsu Province of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3