Author:
Chen Jiajia,Zhong Yuqing,Qi Xin
Abstract
Abstract
Background
Water deficit is an abiotic stress that retards plant growth and destabilizes crop production. Long non coding RNAs (lncRNAs) are a class of non-coding endogenous RNAs that participate in diverse cellular processes and stress responses in plants. lncRNAs could function as competing endogenous RNAs (ceRNA) and represent a novel layer of gene regulation. However, the regulatory mechanism of lncRNAs as ceRNA in drought stress response is yet unclear.
Results
In this study, we performed transcriptome-wide identification of drought-responsive lncRNAs in rice. Thereafter, we constructed a lncRNA-mediated ceRNA network by analyzing competing relationships between mRNAs and lncRNAs based on ceRNA hypothesis. A drought responsive ceRNA network with 40 lncRNAs, 23 miRNAs and 103 mRNAs was obtained. Network analysis revealed TCONS_00021861/miR528-3p/YUCCA7 regulatory axis as a hub involved in drought response. The miRNA-target expression and interaction were validated by RT-qPCR and RLM-5’RACE. TCONS_00021861 showed significant positive correlation (r = 0.7102) with YUCCA7 and negative correlation with miR528-3p (r = -0.7483). Overexpression of TCONS_00021861 attenuated the repression of miR528-3p on YUCCA7, leading to increased IAA (Indole-3-acetic acid) content and auxin overproduction phenotypes.
Conclusions
TCONS_00021861 could regulate YUCCA7 by sponging miR528-3p, which in turn activates IAA biosynthetic pathway and confer resistance to drought stress. Our findings provide a new perspective of the regulatory roles of lncRNAs as ceRNAs in drought resistance of rice.
Funder
National Natural Science Foundation of China
Technology R&D Program of Suzhou
Qinglan Project of Jiangsu Province of China
Publisher
Springer Science and Business Media LLC
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献