An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification and evaluation of Armillaria

Author:

Yu En,Gao Yugang,Li Yaqi,Zang Pu,Zhao Yan,He Zhongmei

Abstract

Abstract Background Gastrodia elata Bl. f. glauca, a perennial herb of G.elata Bl. in Orchidaceae, is one of the most valuable traditional Chinese medicines. G. elata Bl. is a chlorophyll-free myco-heterotrophic plant, which must rely on the symbiotic growth of Armillaria, but not all Armillaria strains can play the symbiotic role. Additionally, Armillaria is easy to degenerate after multiple generations, and the compatibility between the strains from other areas and G. elata Bl. f. glauca in Changbai Mountain is unstable. Therefore, it is incredibly significant to isolate, identify and screen the symbiotic Armillaria suitable for the growth of G. elata Bl. f. glauca in Changbai Mountain, and to explore the mechanism by which Armillaria improves the production performance of G. elata Bl. f. glauca. Results Firstly, G. elata Bl. f. glauca tubers, and rhizomorphs and fruiting bodies of Armillaria were used for the isolation and identification of Armillaria. Five Armillaria isolates were obtained in our laboratory and named: JMG, JMA, JMB, JMC and JMD. Secondly, Armillaria was selected based on the yield and the effective component content of G. elata Bl. f. glauca. It was concluded that the yield and quality of G. elata Bl. f. glauca co-planted with JMG is the highest. Finally, the mechanism of its high quality and yield was explored by investigating the effects of different Armillaria strains on the soil, its nutrition element contents and the soil microbial diversity around G. elata Bl. f. glauca in Changbai Mountain. Conclusions Compared with commercial strains, JMG significantly increased the content of Na, Al, Si, Mn, Fe, Zn, Rb and the absorption of C, Na, Mg, Ca, Cr, Cu, Zn and Rb in G. elata Bl. f. glauca; it improved the composition, diversity and metabolic functions of soil microbial communities around G. elata Bl. f. glauca at phylum, class and genus levels; it markedly increased the relative abundance of bacteria such as Chthoniobacter and Armillaria in the dominant populations, and enhanced such functions as Cell motility, amino acid metabolism and Lipid metabolism; it dramatically decreased the relative abundance of Bryobacter and other fungi in the dominant populations, and reduced such functions as microbial energy metabolism, translation and carbohydrate metabolism. This is the main reason why excellent Armillaria strains promote the high quality and yield of G. elata Bl. f. glauca in Changbai Mountain.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3