Abstract
Abstract
Purpose
Despite the evidence on the role of gravity stress test to access the instability of other ankle injuries, there is limited literature regarding gravity stress on the lateral ankle ligament’s insufficiency. The objective of our study was to objectively measure the tibiotalar angular movement under gravity stress after progressive sectioning of the lateral ankle ligaments.
Methods
We performed sequential sectioning of the anterior talofibular (ATFL), calcaneofibular (CFL), and posterior talofibular ligaments (PTFL) in twelve ankle specimens. Under gravity stress, we measured the angular movement of the talus in relation to the tibia. The measuring device is based on a three-axis gyroscope and accelerometer.
Results
Comparing to the intact condition, the plantar flexion increased on average 1.78° (95% confidence interval [CI] 1.15;2.42), 5.13° (95%CI 3.10;7.16) and 8.63° (95%CI 6.05;11.22), the rotation increased by 1.00° (95 CI -0.51;2.51), 3.68° (95%CI 1.97;5.40) and 15.62° (95%CI 10.09;21.14), and the varus increased 2.89° (95% CI 1.39, 4.39), 8.12° (95% CI 5.16, 11.07) and 11.68° (95% CI 7.91, 15.46), after sectioning the ATFL, CFL, and PTFL, respectively. The overall changes were statistically significant.
Conclusions
There was a significant tibiotalar laxity after sectioning of lateral ankle ligaments when the foot position is influenced only by gravity. The tibiotalar angular displacement was significant when the CFL and PTFL were cut which suggests that the gravity test could be used to assess combined lateral ankle ligament injury. This evidence might be a step forward in the development of lateral ankle ligaments gravity stress tests.
Level of evidence
5 (cadaver study)
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine
Reference21 articles.
1. Bi C, Kong D, Lin J, Wang Q, Wu K, Huang J (2019) Diagnostic value of intraoperative tap test for acute deltoid ligament injury. Eur J Trauma Emerg Surg. https://doi.org/10.1007/s00068-019-01243-w
2. Briceño J, Chien B, Miller C, Velasco B, Kwon JY (2019) Ankle gravity stress view in the seated position: a technical tip. Injury 50:814–815
3. Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah: Routledge. https://books.google.pt/books?hl=pt-PT&lr=&id=gkalyqTMXNEC&oi=fnd&pg=PP1&dq=Cohen+J,+Cohen+P,+West+SG,+Aiken+LS+(2013)+Applied+multiple+regression/correlation+analysis+for+the+behavioral+sciences.+Routledge&ots=tRKT_4t5ag&sig=PhCVIzkJPgH_cXNCWC9rZ8BjLjw&redir_esc=y#v=onepage&q=Cohen%20J%2C%20Cohen%20P%2C%20West%20SG%2C%20Aiken%20LS%20(2013)
4. Docherty CL, Rybak-Webb K (2009) Reliability of the anterior drawer and talar tilt tests using the LigMaster joint arthrometer. J Sport Rehabil 18:389–397
5. Doherty C, Delahunt E, Caulfield B, Hertel J, Ryan J, Bleakley C (2014) The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Med 44:123–140
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献