Augmented reality-based navigation system applied to tibial bone resection in total knee arthroplasty

Author:

Tsukada Sachiyuki,Ogawa HiroyukiORCID,Nishino Masahiro,Kurosaka Kenji,Hirasawa Naoyuki

Abstract

Abstract Background This pilot study was performed to examine the accuracy of the AR-KNEE system, an imageless navigation system using augmented reality (AR) technology for total knee arthroplasty. The AR-KNEE system enables the surgeon to view information from the navigation superimposed on the surgical field on a smartphone screen in real time. Methods Using the AR-KNEE system, one surgeon resected 10 tibial sawbones with viewing the tibial axis and aiming varus/valgus, posterior slope, internal/external rotation angles, and resection level superimposed on the surgical field. We performed computed tomography of the resected sawbones and measured the varus/valgus, posterior slope, and internal/external rotation angles using a designated computer software. The thickness of the resected bone was measured using digital calipers. Results The absolute differences between the values displayed on the smartphone screen and the measurement values for varus/valgus, posterior slope, internal/external rotation angles, and thickness of the resected bone were 0.5° ± 0.2°, 0.8° ± 0.9°, 1.8° ± 1.5°, and 0.6 mm ± 0.7 mm, respectively. Conclusions This pilot study using sawbones suggested that the AR-KNEE system may provide reliable accuracy for coronal, sagittal, and rotational alignment in tibial bone resection during total knee arthroplasty.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3