Abstract
Abstract
Purpose
Posttraumatic fibular malunion alters ankle joint biomechanics and may lead to pain, stiffness, and premature osteoarthritis. The accurate restoration is key for success of reconstructive surgeries. The aim of this study was to analyze the accuracy of a novel three-dimensional (3D) registration algorithm using different segments of the contralateral anatomy to restore the distal fibula.
Methods
Triangular 3D surface models were reconstructed from computed tomographic data of 96 paired lower legs. Four segments were defined: 25% tibia, 50% tibia, 75% fibula, and 75% fibula and tibia. A surface registration algorithm was used to superimpose the mirrored contralateral model on the original model. The accuracy of distal fibula restoration was measured.
Results
The median rotation error, 3D distance (Euclidean distance), and 3D angle (Euler’s angle) using the distal 25% tibia segment for the registration were 0.8° (− 1.7–4.8), 2.1 mm (1.4–2.9), and 2.9° (1.9–5.4), respectively. The restoration showed the highest errors using the 75% fibula segment (rotation error 3.2° (0.1–8.3); Euclidean distance 4.2 mm (3.1–5.8); Euler’s angle 5.8° (3.4–9.2)). The translation error did not differ significantly between segments.
Conclusion
3D registration of the contralateral tibia and fibula reliably approximated the premorbid anatomy of the distal fibula. Registration of the 25% distal tibia, including distinct anatomical landmarks of the fibular notch and malleolar colliculi, restored the anatomy with increasing accuracy, minimizing both rotational and translational errors. This new method of evaluating malreductions could reduce morbidity in patients with ankle fractures.
Level of evidence
IV
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献