Low-intensity pulsed ultrasound irradiation attenuates collagen degradation of articular cartilage in early osteoarthritis-like model mice

Author:

Kojima YoshitsuguORCID,Watanabe Takayuki

Abstract

Abstract Purpose Osteoarthritis (OA) is a combination of degeneration and destruction of articular cartilage due to mechanical stress, secondary synovitis, and bone remodelling. In recent years, early knee OA, a preliminary stage of structural failure in OA, has attracted attention as a potential target for therapy to prevent the onset of OA. Intra-articular administration of monoiodoacetic acid (MIA) induces OA-like symptoms, and low doses of MIA induce early OA like symptoms. In this experiment, a low-dose of MIA was induced to early OA model mice, which were then irradiated with low-intensity pulsed ultrasound (LIPUS) to examine whether LIPUS improves symptoms of early OA. Methods After 4 weeks of LIPUS irradiation, articular cartilage was observed at 1 and 4 weeks. The Osteoarthritis Research Society International (OARSI) scores were calculated using Safranin-O staining results. Cartilage degeneration was detected using Denatured Collagen Detection Reagent (DCDR). Results We observed a significant decrease in OARSI scores in the LIPUS irradiated group at week 4. The non-LIPUS group showed widespread areas of double positivity for Type II collagen and DCDR, whereas the LIPUS group showed only a small number of DCDR-positive areas. In addition, macrophage numbers counted in the articular capsule at week 1 showed a significant decrease in the LIPUS irradiated group. Lubricin detection showed that lubricin positive cell number was significantly increased by LIPUS irradiation at week 4. Conclusions These results suggest that LIPUS attenuates cartilage degeneration in early OA by relieving inflammation and enhancing the inhibitory effect of lubricin on cartilage degeneration.

Funder

Nippon Sigmax Co., Ltd.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3