Abstract
Abstract
Purpose
Intraoperative hinge fractures in distal femur osteotomies represent a risk factor for loss of alignment and non-union. Using finite element analysis, the goal of this study was to investigate the influence of different hinge widths and osteotomy corrections on hinge fractures in medial closed-wedge and lateral open-wedge distal femur osteotomies.
Methods
The hinge was located at the proximal margin of adductor tubercle for biplanar lateral open-wedge and at the upper border of the lateral femoral condyle for biplanar medial closed-wedge distal femur osteotomies, corresponding to optimal hinge positions described in literature. Different hinge widths (5, 7.5, 10 mm) were created and the osteotomy correction was opened/closed by 5, 7.5 and 10 mm. Tensile and compressive strain of the hinge was determined in a finite element analysis and compared to the ultimate strain of cortical bone to assess the hinge fracture risk.
Results
Doubling the correction from 5 to 10 mm increased mean tensile and compressive strain by 50% for lateral open-wedge and 48% for medial closed-wedge osteotomies. A hinge width of 10 mm versus 5 mm showed increased strain in the hinge region of 61% for lateral open-wedge and 32% for medial closed-wedge osteotomies. Medial closed-wedge recorded a higher fracture risk compared to lateral open-wedge osteotomies due to a larger hinge cross-section area (60–67%) for all tested configurations. In case of a 5 mm hinge, medial closed-wedge recorded 71% higher strain in the hinge region compared to lateral open-wedge osteotomies.
Conclusion
Due to morphological features of the medial femoral condyle, finite element analysis suggests that lateral-open wedge osteotomies are the preferable option if larger corrections are intended, as a thicker hinge can remain without an increased hinge fracture risk.
Subject
Orthopedics and Sports Medicine
Reference47 articles.
1. Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P (2004) Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 124:575–584
2. Batista BB, Volpon JB, Shimano AC, Kfuri M Jr (2015) Varization open-wedge osteotomy of the distal femur: comparison between locking plate and angle blade plate constructs. Knee Surg Sports Traumatol Arthrosc 23:2202–2207
3. Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37:27–35
4. Brinkman J-M, Lobenhoffer P, Agneskirchner J, Staubli A, Wymenga A, Van Heerwaarden R (2008) Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. The Journal of bone and joint surgery. British 90:1548–1557
5. Cameron JI, McCauley JC, Kermanshahi AY, Bugbee WD (2015) Lateral opening-wedge distal femoral osteotomy: pain relief, functional improvement, and survivorship at 5 years. Clin Orthop Relat Res 473:2009–2015
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献