Abstract
AbstractThis work studies the problem of construction of optimal quadrature formulas in the sense of Sard in the space $L_{2}^{(m)}(0,1)$
L
2
(
m
)
(
0
,
1
)
for numerical calculation of Fourier coefficients. Using Sobolev’s method, we obtain new sine and cosine weighted optimal quadrature formulas of such type for $N + 1\geq m$
N
+
1
≥
m
, where $N + 1$
N
+
1
is the number of nodes. Then, explicit formulas for the optimal coefficients of optimal quadrature formulas are obtained. The obtained optimal quadrature formulas in $L_{2}^{(m)}(0,1)$
L
2
(
m
)
(
0
,
1
)
space are exact for algebraic polynomials of degree $(m-1)$
(
m
−
1
)
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference23 articles.
1. Boltaev, N.D., Hayotov, A.R., Milovanović, G.V., Shadimetov, Kh.M.: Optimal quadrature formulas for numerical evaluation of Fourier coefficients in $W_{2}^{(m,m-1)}$. J. Appl. Anal. Comput. 7(4), 1233–1266 (2017)
2. Boltaev, N.D., Hayotov, A.R., Shadimetov, Kh.M.: Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space $L_{2}^{(m)}(0,1)$. Numer. Algorithms 74, 307–336 (2017)
3. Bozarov, B.I.: An optimal quadrature formula in the Sobolev space. Uzbek. Mat. Zh. 65(3), 46–59 (2021)
4. Filin, E.A.: A modification of Filon’s method of numerical integration. J. Assoc. Comput. Mach. 7, 181–184 (1960)
5. Filon, L.N.G.: On a quadrature formula for trigonometric integrals. Proc. R. Soc. Edinb. 49, 38–47 (1928)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献