Abstract
AbstractThis paper investigates the optimal Hermite interpolation of Sobolev spaces$W_{\infty }^{n}[a,b]$W∞n[a,b],$n\in \mathbb{N}$n∈Nin space$L_{\infty }[a,b]$L∞[a,b]and weighted spaces$L_{p,\omega }[a,b]$Lp,ω[a,b],$1\le p< \infty $1≤p<∞withωa continuous-integrable weight function in$(a,b)$(a,b)when the amount of Hermite data isn. We proved that the Lagrange interpolation algorithms based on the zeros of polynomial of degreenwith the leading coefficient 1 of the least deviation from zero in$L_{\infty }$L∞(or$L_{p,\omega }[a,b]$Lp,ω[a,b],$1\le p<\infty $1≤p<∞) are optimal for$W_{\infty }^{n}[a,b]$W∞n[a,b]in$L_{\infty }[a,b]$L∞[a,b](or$L_{p,\omega }[a,b]$Lp,ω[a,b],$1\le p<\infty $1≤p<∞). We also give the optimal Hermite interpolation algorithms when we assume the endpoints are included in the interpolation systems.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Best one-sided approximation and optimal Hermite–Fejér interpolation on an infinite interval;International Journal of Wavelets, Multiresolution and Information Processing;2024-06-26