Author:
Yang Shanchao,Xie Jiaying,Luo Shuyi,Li Zhiyong,Yang Xin
Abstract
AbstractMixing is not much used in the high-frequency literature so far. However, mixing is a common weakly dependent property of continuous and discrete stochastic processes, such as Gaussian, Ornstein–Uhlenberck (OU), Vasicek, CIR, CKLS, logistic diffusion, generalized logistic diffusion, and double-well diffusion processes. So, long-span high-frequency data typically have weak dependence, and using mixing to study them is also an alternative approach. In this paper, we give some moment inequalities for long-span high-frequency data with ϕ-mixing, ρ-mixing, and α-mixing. These inequalities are effective tools for studying asymptotic properties. Applying these inequalities, we investigate the strong consistency of parameter estimation for the OU-integrated diffusion process. We also derive the mean square error of the estimation of the OU process and the optimal interval for the drift parameter estimator.
Funder
Guangxi Natural Science Foundation
Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis