An ADMM-based SQP method for separably smooth nonconvex optimization

Author:

Liu Meixing,Jian Jinbao

Abstract

AbstractThis work is about a splitting approach for solving separably smooth nonconvex linearly constrained optimization problems. Based on the ideas from two classical methods, namely the sequential quadratic programming (SQP) and the alternating direction method of multipliers (ADMM), we propose an ADMM-based SQP method. We focus on decomposing the quadratic programming (QP) subproblem of the primal problem into small-scale QP subproblems, which further embedded with Bregman distances can be solved effectively and followed by a dual ascent type update for the Lagrangian multipliers. Under suitable conditions as well as the crucial Kurdyka–Łojasiewicz property, we establish the global and strong convergence properties of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sequential quadratic programming-based non-cooperative target distributed hybrid processing optimization method;Journal of Systems Engineering and Electronics;2023-02

2. Decentralized non-convex optimization via bi-level SQP and ADMM;2022 IEEE 61st Conference on Decision and Control (CDC);2022-12-06

3. Application of sequential quadratic programming based on active set method in cleaner production;Clean Technologies and Environmental Policy;2021-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3