Abstract
AbstractThis work is about a splitting approach for solving separably smooth nonconvex linearly constrained optimization problems. Based on the ideas from two classical methods, namely the sequential quadratic programming (SQP) and the alternating direction method of multipliers (ADMM), we propose an ADMM-based SQP method. We focus on decomposing the quadratic programming (QP) subproblem of the primal problem into small-scale QP subproblems, which further embedded with Bregman distances can be solved effectively and followed by a dual ascent type update for the Lagrangian multipliers. Under suitable conditions as well as the crucial Kurdyka–Łojasiewicz property, we establish the global and strong convergence properties of the proposed method.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangxi Province
Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference29 articles.
1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
2. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)
3. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. RAIRO. Anal. Numér. 9(2), 41–76 (1975)
4. Goldfard, D., Ma, S.Q., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141(1–2), 349–382 (2013)
5. Goldstein, T., Donoghue, B.O., Setzer, S.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献