Abstract
AbstractWe suggest a sufficient setting on any linear space of sequences $\mathcal{V}$
V
such that the class $\mathbb{B}^{s}_{\mathcal{V}}$
B
V
s
of all bounded linear mappings between two arbitrary Banach spaces with the sequence of s-numbers in $\mathcal{V}$
V
constructs a map ideal. We define a new sequence space $(\mathit{ces}_{r_{1},r_{2}}^{t} )_{\upsilon }$
(
ces
r
1
,
r
2
t
)
υ
for definite functional υ by the domain of $(r_{1},r_{2})$
(
r
1
,
r
2
)
-Cesàro matrix in $\ell _{t}$
ℓ
t
, where $r_{1},r_{2}\in (0,\infty )$
r
1
,
r
2
∈
(
0
,
∞
)
and $1\leq t<\infty $
1
≤
t
<
∞
. We examine some geometric and topological properties of the multiplication mappings on $(\mathit{ces}_{r_{1},r_{2}}^{t} )_{\upsilon }$
(
ces
r
1
,
r
2
t
)
υ
and the pre-quasi ideal $\mathbb{B}^{s}_{ (\mathit{ces}_{r_{1},r_{2}}^{t} )_{\upsilon }}$
B
(
ces
r
1
,
r
2
t
)
υ
s
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference35 articles.
1. Lima, Å., Oja, E.: Ideals of finite rank operators, intersection properties of balls, and the approximation property. Stud. Math. 133, 175–186 (1999)
2. Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980)
3. Mrowka, T.: A brief introduction to linear analysis: Fredholm operators, geometry of manifolds, Fall 2004. Massachusetts Institute of Technology, MIT OpenCouseWare (2004)
4. Kalton, N.J.: Spaces of compact operators. Math. Ann. 208, 267–278 (1974)
5. Faried, N., Bakery, A.A.: Small operator ideals formed by s numbers on generalized Cesàro and Orlicz sequence spaces. J. Inequal. Appl. 2018(1), Article ID 357 (2018). https://doi.org/10.1186/s13660-018-1945-y
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献