Abstract
Abstract
In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$(η1,η2)-convex function and establish its Hermite–Hadamard type inequality.
Funder
Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献