Author:
Moreka Alexander E.,Kumar Santosh,Mursaleen M.
Abstract
AbstractIn this paper, we generalize and extend the Baskakov-Kantorovich operators by constructing the $(p, q)$
(
p
,
q
)
-Baskakov Kantorovich operators $$ \begin{aligned} (\Upsilon _{n,b,p,q} h) (x) = [ n ]_{p,q} \sum_{b=0}^{ \infty}q^{b-1} \upsilon _{b,n}^{p,q}(x) \int _{\mathbb{R}}h(y)\Psi \biggl( [ n ] _{p,q} \frac{q^{b-1}}{p^{n-1}}y - [ b ] _{p,q} \biggr) \,d_{p,q}y. \end{aligned} $$
(
ϒ
n
,
b
,
p
,
q
h
)
(
x
)
=
[
n
]
p
,
q
∑
b
=
0
∞
q
b
−
1
υ
b
,
n
p
,
q
(
x
)
∫
R
h
(
y
)
Ψ
(
[
n
]
p
,
q
q
b
−
1
p
n
−
1
y
−
[
b
]
p
,
q
)
d
p
,
q
y
.
The modified Kantorovich $(p, q)$
(
p
,
q
)
-Baskakov operators do not generalize the Kantorovich q-Baskakov operators. Thus, we introduce a new form of this operator. We also introduce the following useful conditions, that is, for any $0 \leq b \leq \omega $
0
≤
b
≤
ω
, such that $\omega \in \mathbb{N}$
ω
∈
N
, $\Psi _{\omega}$
Ψ
ω
is a continuous derivative function, and $0< q< p \leq 1$
0
<
q
<
p
≤
1
, we have $\int _{\mathbb{R}}x^{b}\Psi _{\omega}(x)\,d_{p,q}x = 0 $
∫
R
x
b
Ψ
ω
(
x
)
d
p
,
q
x
=
0
. Also, for every $\Psi \in L_{\infty}$
Ψ
∈
L
∞
,
there exists a finite constant γ such that $\gamma > 0$
γ
>
0
with the property $\Psi \subset [ 0, \gamma ] $
Ψ
⊂
[
0
,
γ
]
,
its first ω moment vanishes, that is, for $1 \leq b \leq \omega $
1
≤
b
≤
ω
, we have that $\int _{\mathbb{R}}y^{b}\Psi (y)\,d_{p,q}y = 0$
∫
R
y
b
Ψ
(
y
)
d
p
,
q
y
=
0
,
and $\int _{\mathbb{R}}\Psi (y)\,d_{p,q}y = 1$
∫
R
Ψ
(
y
)
d
p
,
q
y
=
1
.
Furthermore, we estimate the moments and norm of the new operators. And finally, we give an upper bound for the operator’s norm.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference27 articles.
1. Acar, T., Aral, A., Mohiuddine, A.: On Kantorovich modification of $(p, q) $-Baskakov operators. J. Inequal. Appl. 2016(1), 98 (2016)
2. Agratini, O.: Construction of Baskakov-type operators by wavelets. Rev. Anal. Numér. Théor. Approx. 26(1), 3–11 (1997)
3. Aral, A., Gupta, V.: On q-Baskakov type operators. Demonstr. Math. 42(1), 109–122 (2009)
4. Aral, A., Gupta, V.: $(p, q) $-Type beta functions of second kind. Adv. Oper. Theory 1(1), 134–146 (2016)
5. Aral, A., Gupta, V., Agarwal, R.P.: Applications of Q-calculus in Operator Theory. Springer, Berlin (2013)