Abstract
AbstractIn this paper we study the utility of the functional Pompeiu–Chebyshev in some inequalities. Some results obtained by Alomari will be generalized regarding inequalities with Pompeiu–Chebyshev type functionals, in which linear and positive functionals intervene. We investigate some new inequalities of Grüss type using Pompeiu’s mean value theorem. Improvement of known inequalities is also given.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference9 articles.
1. Alomari, M.W.: On Pompeiu–Chebyshev functional and its generalization. Results Math. 74, 1–36 (2019)
2. Barnett, N.S., Dragomir, S.S.: An additive reverse of the Cauchy–Bunyakovsky–Schwarz integral inequality. Appl. Math. Lett. 21, 388–393 (2008)
3. Chebysev, P.L.: Sur les expressions approximatives des integrals definis parles outres prises entre les meme limites. Proc. Math. Soc. Charkov 2, 93–98 (1882)
4. Dragomir, S.S.: Some Grüss-type results via Pompeiu-like inequalities. Arab. J. Math. 4, 159–170 (2015)
5. Grüss, G.: Uber das maximum des absoluten Betrages von $\frac{1}{b-a} \int _{a}^{b}f(x)g(x)\,dx-\frac{1}{(b-a)^{2}} \int _{a}^{b}f(x)\,dx \int _{a}^{b}g(x)\,dx $. Math. Z. 39, 215–226 (1935)