Author:
Ko Eungil,Lee Ji Eun,Lee Jongrak
Abstract
AbstractThe generalized derivative Hardy space $S^{2}_{\alpha ,\beta}(\mathbb{D})$
S
α
,
β
2
(
D
)
consists of all functions whose derivatives are in the Hardy and Bergman spaces as follows:for positive integers α, β, $$ S^{2}_{\alpha ,\beta}(\mathbb{D})= \biggl\{ f\in H(\mathbb{D}) : \Vert {f} \Vert ^{2}_{S^{2}_{ \alpha ,\beta}}= \Vert {f} \Vert ^{2}_{H^{2}}+{ \frac{{\alpha +\beta}}{\alpha \beta}} \bigl\Vert {f'} \bigr\Vert ^{2}_{A^{2}}+ \frac{1}{\alpha \beta} \bigl\Vert {f'} \bigr\Vert ^{2}_{H^{2}}< \infty \biggr\} , $$
S
α
,
β
2
(
D
)
=
{
f
∈
H
(
D
)
:
∥
f
∥
S
α
,
β
2
2
=
∥
f
∥
H
2
2
+
α
+
β
α
β
∥
f
′
∥
A
2
2
+
1
α
β
∥
f
′
∥
H
2
2
<
∞
}
,
where $H({\mathbb{D}})$
H
(
D
)
denotes the space of all functions analytic on the open unit disk ${\mathbb{D}}$
D
. In this paper, we study characterizations for Toeplitz operators to be complex symmetric on the generalized derivative Hardy space $S^{2}_{\alpha ,\beta}(\mathbb{D})$
S
α
,
β
2
(
D
)
with respect to some conjugations $C_{\xi}$
C
ξ
, $C_{\mu , \lambda}$
C
μ
,
λ
. Moreover, for any conjugation C, we consider the necessary and sufficient conditions for complex symmetric Toeplitz operators with the symbol φ of the form $\varphi (z)=\sum_{n=1}^{\infty}\overline{\hat{\varphi}(-n)} \overline{z}^{n}+\sum_{n=0}^{\infty}\hat{\varphi}(n)z^{n}$
φ
(
z
)
=
∑
n
=
1
∞
φ
ˆ
(
−
n
)
‾
z
‾
n
+
∑
n
=
0
∞
φ
ˆ
(
n
)
z
n
. Next, we also study complex symmetric Toeplitz operators with non-harmonic symbols on the generalized derivative Hardy space $S^{2}_{\alpha ,\beta}(\mathbb{D})$
S
α
,
β
2
(
D
)
.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference11 articles.
1. Brown, A., Halmos, P.R.: Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213, 89–102 (1964)
2. Bu, Q., Chen, Y., Zhu, S.: Complex symmetric Toeplitz operators. Integral Equ. Oper. Theory 93, 15, 19pp (2021)
3. Douglas, R.G.: Banach Algebra Techniques in Operator Theory. Academic Press, New York (1972)
4. Garcia, S.R., Prodan, E., Putinar, M.: Mathematical and physical aspects of complex symmetric operators. J. Phys. A, Math. Theor. 47, 353001, 57pp (2014)
5. Garcia, S.R., Putinar, M.: Complex symmetric operators and applications. Trans. Am. Math. Soc. 358, 1285–1315 (2006)